4/27/2023
Dear EE457 students,

Final Exam (~33.5%): Wednesday, May 10, 2023, 03:30 PM - 06:30 PM PST inTHH 301
Exam Hall for Zoom exam for remote students (and extra time for the OSAS students) THH 125

Final Exam is comprehensive, but it focuses on later topics (Midterm topics included). We hope to use the following
two scales (as stated in the MT score sheet, the syllabus, and the plan for the first three weeks).

Quiz + MT + Final = 12+26+30 = 68

Quiz + MT + Final = 10+21+37 = 68

I assume that you had gone through your midterm exam solution and understood the same. Sometimes, | may
ask a question in the final which is related to a question on the midterm.

Also please go through the two “short homework assignments” on the advanced topics.
Approximate breakdown of the Final exam:

My desire for the final exam is as follows:

1. Ask questions in the Virtual memory and Cache topic, weighing about 15% of
the final exam.

Reproduced is an extract from your midterm preparation guide on these two
topics.

4. Chapter #7 Cache and HW#6, you need to complete the assigned parts of HW#6
One major question and one medium question.

The following two questions are important typical questions.

Do go through them and be ready to get 100% on this topic.

4.1 Q#5 on cache organization from the Spring 2015 Midterm:
http://www-classes.usc.edu/ engr/ee-s/457/ee457 Spring2015 exams/ee457 MT Spring2015.pdf

http://www-classes.usc.edu/ engr/ee-s/457/ee457 Spring2015 exams/ee457 MT Spring2015 sol.pdf

4.2 Q#5 on cache mapping techniques from Fall 2010 MT.

Please go through its solution and then *time* yourself to solve it.

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457 Fall2010 exams/ee457 MT Fall2010.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457 Fall2010 exams/ee457 MT Fall2010 sol.pdf

4.3 Please look at the Q#4.1 Q#4.2 and Q#4.6 of Spring 2017 Midterm and
sol.pdf on Cache.
Questions could be "reverse-engineering" type questions like in the
Midterm of Fall 2015 OQ#3.

9. Virtual Memory tOpiC (normally covered after midterm but covered early in recent semesters including this

semester)

9.0. This semester, I finished covering the first lecture of the two lectures on
Virtual memory on 3/8/2023 and 3/9/2023. My lecture on Monday 3/20 and Tuesday 3/21
will cover the material for the 27d lecture.

But in case you wished that the lecture is available now before the Spring break,
yes, I made a copy of the Fall 2022 lecture and posted in the week #9 lectures, and
it is available now on D2L!

Go to Table of Contents => Week 9 (3/6-3/10) => 2nd lecture of the two-lecture
series on the "Virtual Memory" topic from Fall 2022

9.1. Q#4 from MT of Fall 2014. Please see item 7 above.

HW#7 and its solution eed57 HW7.pdf eedb7 HW7 solution rl.pdf

Please look at ee457 MT Sp2012 VM Ques sol.pdf , ee457 MT Sp2013 VM Ques sol.pdf ,

Please go through the Spring 2015 Final question 6.on virtual memory.

Some discussion about VIPT and PIPT

O O O O
S NN

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_MT_Spring2015.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_MT_Spring2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2010_exams/ee457_MT_Fall2010.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2010_exams/ee457_MT_Fall2010_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_MT_Fall2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_HW7.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_HW7_solution_r1.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2012_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2013_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015_sol.pdf

VIPT (Virtually Indexed Physically Tagged)
Vs.
PIPT (Physically Indexed Physically Tagged)
The 9-stage pipeline became an 8-stage pipeline because the I Cache Tag Check stage

is hidden behind the instruction decoding stage.

Similarly, can you hide the D _Cache Tag Check stage? No! Memory write operation for SW is not like a stand-
alone register writing operation, hence it cannot be aborted at the end of a clock if the D Cache Tag check
fails. So, you cannot hide the D Cache Tag Check stage.

Further if we use VIPT for both I Tag Access, and D Tag Access, we can reduce the
8-stage pipeline to a 6-stage pipeline! But VIPT requires either very large virtual

pages or very small L1 caches = . Hence you should not attempt to do VIPT to hide
stages! VIPT is a concept. It may not be practical in many cases.

Degree of set associativity does not need to be a power of 2 but the number of sets
shall be a power of 2. Since TLB is a cache of the PT, we can think of all three
cache mappings (Fully Associative, Set-Associative, and Direct) for the TLB also.
However (perhaps) Direct mapping for TLB is never used because of performance
degradation due to conflicts.

Block size in TLB: Unlike in cache, the block size in TLB is always a single entry.
Entries in TLB are always singular. Explanation: If you are going to Ralphs to buy
milk, you may buy bread also even if you are not sure if you needed it. That is
like bringing a block of 4 words where you are not sure if the other three words
will be useful. But, if you are going to buy a car, you do not buy an RV
(Recreation Vehicle) in anticipation that it may be useful!

But what’s the analogy? Well, when you bring a page from the disc to the main
memory, you just bring the page that you need; you do not bring a couple of more
pages. So, if we have an entry in the PT and you could find the PPFN given the VPN,
do not expect to find a block of entries (2 or 4 valid entries including the entry
you went for). Hence TLB entries (which are copies of selected PT entries) are
always singular!

2. One major design question (25%) and one analysis question (15%)

on Lab 7, Lab 6, and the single cycle CPU (total 40%)

i.e., Lab 7 all parts (i.e. Part 1 and 2 and Part 3 (SP1l, SP2, SP3, SP4))
and Lab 6 Part 4 and Part 5

Look at the recent midterms and the finals

Also, please browse through EE457 Lab7 Quick familiarity test.pdf!

3. Advanced topics: (About 35% to 40% of the final) => Look at the recent
finals.

4. Rest of the 10% is covered by midterm topics and other miscellaneous topics
(Carry Look-ahead Adder CLA excluded).

Please make sure that you have enough rest on the night before
the exam so that you will be able to think and design during the exam.

Every semester, a few students keep awake all night, and then fail to answer
even simple questions because their minds are too tired to think.
Do not let this happen to you. EE457 exam is NOT about memorization.

Office hours during the week before the final: We will announce some hours, but the TA and
the Mentors have their finals too.

Good luck with your preparation.

Best of luck in all your exams,
Gandhi, Tejas, Abhipray, Shubham, Abhilash, Ziyu

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Exam_Prep/EE457_Lab7_Quick_familiarity_test.pdf

Some recommendations for your preparation

I have not written the exam yet. These are only recommendations.
It is not necessary that the exam is exactly based on this.

The exam is comprehensive. However, Chapter #1, HW #1, Lab #1 (Min/Max),
Chapter #2, HW #2, Chapter #3, HW#3, Chapter #4, HW#4 (the Quiz topics) are not
important for the final as we tested them adequately in the quiz/midterm. In
recent semesters, we have not been covering the topic of a multi-cycle CPU.
Hence chapter #5 Part 2, HW#5b, Lab #4 P4 are excluded. However, the single
cycle CPU topic (chapter 5 Part 1 and HW#5a) is not excluded for the final
exam.

0. When looking at the previous years' final exams (very old finals), you need
to skip questions on the following topics as we have not been covering these
lately.

CLA (Carry Look-ahead Adders)
Non-linear pipelines
Fast Multipliers based on Carry-Save adders (Wallace Tree Multiplier)

0ld exams from year 2011 and before are less important and are not provided.

Go through 3 to 4 of the most recent final exams (Fall 2022 and before) and
their solutions listed on D2L => Past Exams (which are also listed below) by
solving each question mentally and then going through the solution. Then try to
time yourself and answer one or two design questions from exams that you did
not go through.

Past Final Exams and Solutions:

Fall 2022 First go through Q#1 from the midterm, and then through Q#1 of the Final.
eedb7 Final Fall2022.pdf eed57 MT Fall2022.pdf
eed57 Final Fall2022 sol.pdf eed57 MT Fall2022 sol.pdf

ee457 Final Sp2022.pdf Skip Q#1
eed57 Final Sp2022 sol.pdf Skip Q#1

eedb57 Final Fall2021.pdf
eedb57 Final Fall2021 sol.pdf

eed57 Final Sp2021.pdf Skip Q#1
eed57 Final Sp2021 sol.pdf Skip Q#1

ee457 Final Fall2020.pdf Skip Q#1
eed57 Final Fall2020 sol.pdf Skip Q#1

ee457 Final Sp2020.pdf
eed57 Final Sp2020 sol.pdf

eed57 Final Fall2019.pdf
eed57 Final Fall2019 sol.pdf

eed57 Final Spring2019.pdf
ee457 Final Spring2019 sol.pdf

eed57 Final Fall2018.pdf
eed57 Final Fall2018 sol.pdf

eed457 Final Sprlng2018.pdf (skip Q#2 on addition/subtraction overflows)
eed57 Final Spring2018 sol.pdf

eed457 Final Fall2017 .pdf (skip Q#3 on a special processor for military, lengthy question)
eed57 Final Fall2017 sol.pdf

ee457 Final Spring2017.pdf
eedb7 Final Spring2017 sol.pdf

ee457 Final Fall2016.pdf (skip 0#6 on CLA)
eed4b57 Final Fall2016 sol.pdf

eedb57 Final Spring2016.pdf
ee457 Final Spring2016 sol.pdf

eed57 Final Fall2015.pdf (skip Q#2)
ee457 Final Fall2015 Sol .pdf (skip Q#2 as it is a clumsy design to make it a special processor for CIA)

ee4d57 Final Spring2015.pdf (skip 0#1.2 on ROB as we did not do the ROB lab)
eedb57 Final Spring2015 sol.pdf

T .pdf (Skip Q#4 as it is difficult. Moreover, I stopped asking questions involving a
branch delay slot together with a cache miss ICMT and DCMT) (skip Q#5 on CLA)

A5 T2~ 112074 ol ~AL
CCao——rthar rarrzZ2ora—SOT-PGE

eed57 Final Sp2014.pdf (skip Q#4 on CLA)
eedb57 Final Sp2014 sol.pdf

eedb7 Final Fall2013.pdf (skip Q#5 on CLA)
eed57 Final Fall2013 sol.pdf

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_Final_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_MT_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_Final_Fall2022_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_MT_Fall2022_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2022_exams/ee457_Final_Sp2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2022_exams/ee457_Final_Sp2022_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_Final_Fall2021.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_Final_Fall2021_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2021_exams/ee457_Final_Sp2021.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2021_exams/ee457_Final_Sp2021_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2020_exams/ee457_Final_Fall2020.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2020_exams/ee457_Final_Fall2020_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2020_exams/ee457_Final_Sp2020.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2020_exams/ee457_Final_Sp2020_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2019_exams/ee457_Final_Fall2019.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2019_exams/ee457_Final_Fall2019_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2019_exams/ee457_Final_Sp2019.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2019_exams/ee457_Final_Sp2019_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2018_exams/ee457_Final_Fall2018.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2018_exams/ee457_Final_Fall2018_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2018_exams/ee457_Final_Spring2018.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2018_exams/ee457_Final_Spring2018_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2017_exams/ee457_Final_Fall2017.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2017_exams/ee457_Final_Fall2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_Final_Spring2017.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_Final_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2016_exams/ee457_Final_Fall2016.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2016_exams/ee457_Final_Fall2016_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2016_exams/ee457_Final_Spring2016.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2016_exams/ee457_Final_Spring2016_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_Final_Fall2015.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_Final_Fall2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2014_exams/ee457_Final_Fall2014.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2014_exams/ee457_Final_Fall2014_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2014_exams/ee457_Final_Sp2014.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2014_exams/ee457_Final_Sp2014_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2013_exams/ee457_Final_Fall2013.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2013_exams/ee457_Final_Fall2013_sol.pdf

1. About 40% of the final exam will be dedicated to the 6 advanced topics and
chapter 9 in class notes.

Please go through questions on special topics in the recent final exams and
check your answers with the solutions. The three short homework assignments,
where we gathered selected questions from the recent exams, form a good
preparation on Tomasulo, Branch Prediction, and Cache Coherency and Mutual exclusion.

1.1. Exceptions:
Difference between Precise exceptions and other exceptions.
Undefined opcode to "extend" the ISA.
Offending instruction shall remain silent until it reaches the WB stage.
Exceptions are taken in (temporal/program) order.

1.2. Branch Prediction:
BPB (Branch Prediction Buffer) 1l-bit vs. 2-bit branch predictors,
BTB (Branch Target Buffer),
Correlating branches, (m,n) predictor,
Aliasing shall be avoided if you wish to predict from the
(IF / ID) stage.

U
_—) o BTB
Branch Prediction Buffer B — Y B
branchPC M/Yg] index [00)]

—x
B Tag | target address |
N o/ — ,.\ ,\ NOT IGNORED
- oo

o

predicting from IF (2

IGNORED

e 0 0 ® e
Aliasing is OK if predicting Pyed|c[T Predlct T _ C hit
from the ID stage.
dizbadcdin o N N N v/n:\\

RAS (Return Address Stack) is a hardware stack, quite shallow, yet...
LIFO but ecircular! Do you continue to push into RAS (as a result of
jal), even if it is full? Y

During return from a subroutine (as a result of jR}, =

what 1f RAS becomes empty? Keep returning the last ol — _—
returned address, because 1t could be a recursive rose—s] NN\
call! If it is during the return phase of a SRS

recursive call, returning the last popped return o

address, when the shallow RAS becomes emply, can Sy

prove to be beneficial. TR

RAS is not repaired or restored during branch misprediction, as it is quite
expensive to do so.

The unrepaired/unrestored RAS may provide wrong return addresses for a few
occasions after the branch misprediction. This is considered acceptable since a
return address provided by RAS is considered to be a prediction anyways. The
actual return address is fetched by the JR $31 and is compared with the return
address predicted by the RAS. In case of mismatch, wrong-path instructions are
flushed (very much like in the case of a mispredicted conditional branch).

The actual return address is fetched by the JR $31 from $31 and an instruction

prior to that [lw $31, 0($29)] must have loaded $31 with the return address
saved on the system stack.

1.3. Out-of-Order Execution

Several multiple-choice questions equivalent to one major question.

1.3.1. FIFO design review from EE201L -- Single clock FIFO and 2-clock FIFO,
and the FIFO lab. Yes, the two-clock FIFO is included.

Slides .pdf Webcast (44 minutes) .avi .wmv EE457 FIFO lab .pdf
Sample questions .pdf Also see questions from recent exams.

https://viterbi-web.usc.edu/www-classes/engr/ee-s/201/EE201L_CLASSNOTES/EE201L_CLASSNOTES_Ch11_memory/FIFO/FIFO_1_full-size.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/201/EE201L_CLASSNOTES/EE201L_CLASSNOTES_Ch11_memory/FIFO/FIFO_1.avi
https://viterbi-web.usc.edu/www-classes/engr/ee-s/201/EE201L_CLASSNOTES/EE201L_CLASSNOTES_Ch11_memory/FIFO/FIFO_1.wmv
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab_manual_Fl2010/EE457_FIFO/FIFO_Design_and_Application.pdf
https://www.dropbox.com/s/gt56kw56uiaxb8f/EE457_EE354L_FIFO_Questions.pdf?dl=0

1.3.2. IoI-00E-0OoC [Out-of-Order Execution with out-of-order completion
(Tomasulo Part 1 algorithm with a TAG FIFO and RST (without ROB))]

I-Cache TAG FIFO
] |
o —TStIE. RST RF
w Queue
g ; $1 $1 '-
[Register I |
Stat $2 |__DOG 2
Table _—CDispatch) 93 33
$4 $4 |
$5 $5
3 3 3 3 $7 $7 |
=] =] _
Z ® N £ 58 LN |TiqgWeg |]
= =] =
S IR R S— Issue . :
i ; i H Unit .
Integer / D-Cach E . y
S 2ElES | Div Mul $31 $31
1 1 1

cbB

RAW, WAW, WAR,
WAW and WAR are called name dependencies, RAW is the true dependency.

How WAW and WAR problems in registers are solved (are made to disappear)
through register renaming, and why it is not practical to do the same

for the WAW and WAR problems in memory locations (no MST memory status
table as it is too big and too slow).

Some details of register renaming: RST (Register Status Table), forwarding

through (from) CDB,
neither source register IDs nor destination register IDs are carried into

the backend,

a new TAG is allocated for the (source/destination) register of each
instruction. And the same TAG is conveyed to subsequent instructions if their
source register ID matches with this junior-most senior instruction's
destination. This goes on until

(a) the same register is used as a destination by another junior instruction
or

(b) the original senior instruction has completed causing removal of his TAG
from the RST.

TAGs need not be issued in any specific order, no virtual queue is formed by
TAGs, TAGs are just unique Tokens

TAG FIFO: Is FIFO necessary or is it used for convenience?

Dispatch unit, Dispatch is halted after a branch is issued until it is
resolved in this OoC design.

But once the branch is resolved, dispatch continues and hence it is possible
that some of the instructions upstream of a conditional branch may coexist with
some instructions downstream of a conditional branch? Yes!

Instructions in loops and how instructions from different iterations of the
loop can possibly co-exist in the backend. (Loop unrolling occurs dynamically)

Issue Queues (also called reservation stations): is it necessary or
desirable (just desirable but not necessary) to maintain instructions in the order of
arrival? Necessary for LSQ, desirable for the rest of the queues.

Purpose of the Issue Unit is to manage traffic on CDB. Does the Issue Unit
designer desire that every execution unit is a fixed-latency execution unit?
Yes! Then how about the lw instructions, which may incur cache miss? That is
why we have placed Load Buffer after the cache!

Memory disambiguation rules

1.3.3. Out of Order Execution with in-order completion (Tomasulo algorithm with
ROB)

|I-Cache

l

Tnstruction
Prefetch

Queue

Current Tail

Reg. File

Br. Pred.
| Buffer

e 4 | s | | ot | s | |
o o = o
3 3 Addr. | S a
] %] L] =
= 3 W 2 3 [Cmult
Issue
i | i H ‘ Unit
lore, :
Integer / |[{A%°ll D-Cache | | :
Buffed H
Branch i Div Mul
L/S Buffer . e A — 9
1 1 l CDB WAW and WAR? No worries, it is strict IoC. But ..

Difference between completion of execution and retirement (commitment).
This design is capable of supporting precise exceptions.
No RST here, because of difficulty in restoring (repairing) RST in the case
of branch misprediction.
No Tag FIFO. In place of a Tag like “LION” in Part I of Tomasulo, we use the ID
of the ROB slot pointed to by WP during Dispatch. This is called a “ROB Tag”.
Each instruction going into the backend including sw (store word which does
not have a destination register) is allocated a ROB TAG.
A virtual queue is formed because of the ROB slots associated with the
dispatched instructions.
ROB is a FIFO, which is a circular buffer. First-in-first-out in ROB means
in-order completion!

A ROB slot is allocated to a new instruction by the (Dispatch
Unit/Issue Unit).
The ROB Tag allocated to a new instruction is (WP/WP+1/WP-

1/RP/RP+1/RP-1).

At the committing end, the instruction pointed to by the
(WP/WP+1/WP-1/RP/RP+1/RP-1) in ROB is allowed to commit if it has completed
execution in the backend.

Upon completion of execution, an instruction comes on CDB and joins ROB at

(the tail of the queue/the head of the queue / location allocated to it
previously at the time of dispatch).

To do so, we need a random-access port on the ROB for
(reading/writing/reading as well as writing).

ROB search for the *youngest* senior (junior-most senior) instruction with
destination register ID matching with the source ID of the instruction being

dispatched. The ROB search is (a sequential search
/ an associative meaning parallel search). To perform prioritized associative
search for say $2 in a 32-location circular ROB, we used (1/2/3/4)

32-input fixed priority resolvers. Two for $Rs and Two for $Rt for a 2-source
instruction such as add Rd, SRs, SRt.

Speculative execution: Based on branch prediction, instructions after a
branch (either at Target or at fall-through based on prediction) are
dispatched. A series of branch predictions can happen and branches
(1/2) 1. may get resolved in out of order 2. have to be resolved in-order only.

In case of a misprediction, wrong-path instructions are flushed. All
instructions (younger/elder) to the mispredicted branch instruction (or
mispredicted JR $31) are called wrong-path instructions. "Who is younger to the

branch instruction" is inferred by computing the distance of all instructions
with respect to the senior-most instruction (pointed to by the (WP/RP)) .
There (is a / is no) need for comparing the ROB Tag of an instruction in
the backend with the ROB Tag of the mispredicted branch. Then, what is the
purpose of announcing on CDB the ROB Tag of the mispredicted branch, if other
instructions in backend do not want to compare their ROB Tags with this? The

mispredicted branch is already announcing its distance from RP!

Answer: Well, the ROB needs to adjust its WP to the ROB Tag of the mispredicted

branch in order to flush the wrong-path instructions in the ROB.

Distance = (ROB tag of the instruction - RP) mod 32 (mod 32 if 32 is the
depth of the ROB *and* if we use a 5-bit ROB tag).

In EE201L and in the FIFO lab, we taught two methods of distinguishing the
EMPTY state of the FIFO from the FULL state of the FIFO.

For our ROB (a 32-location FIFO), we use 5-bit pointers for WP and RP and
perform depth calculation by doing the mod-32 subtraction:

Depth = [WP - RP] mod 32

However, when [WP == RP], the ROB can be empty or FULL. We can use a
separate Flip-Flop to record whether the ROB was most recently running Almost-
Full or Almost-Empty and use this information to interpret [WP == RP] as
indicating FULL or EMPTY respectively.

Another method is to use (n+l)-bit pointers. For example, for the 32-
location ROB, we could use 6-bit pointers for WP and RP. Then we need to
perform mod 64 subtraction (note: mod 64 and not mod 32) subtraction to

calculate the depth: Depth = [WP - RP] mod 64
In this case, WP-RP = 000000 represents (EMPTY/FULL) and
WP-RP = 100000 represents (EMPTY/FULL) . In our EE560, it had so

happened that the ROB designer used 6-bit pointers internal to ROB, all other
designers external to ROB have used 5-bot pointers. And there was an
interesting way to reconcile these two designs!

RAS (Return Address Stack): Even a 4-deep hardware stack (RAS) is able to
predict return addresses fairly well.

RAS (is /is not) repaired, when you flush a bunch of wrong-path
instructions, which may include some jal and some jR instructions, which may
have caused some pushes to RAS and some pops from RAS respectively.

RAS, being circular, soon repairs itself! JR $31 carries with itself the
predicted return address and compares with the actual $31’'s contents. If they
mismatch, it announces misprediction on CDB and conveys the actual content to
the Dispatch unit. Wrong-path instructions in the Backend, in the ROB, and in
the IFQ (Instruction Prefetch Queue) are flushed and instructions at the right
return address start fetching.

1.4. Chapter 9 and cache coherency protocols (MSI, MOESTI)

1.4.1 Mutual Exclusion, RWM Race:

OLD method to avoid RMW race: Make all shared variables such
as the Student Data Base Lock (SDBL) uncacheable on the SDBL
other side of the bus. Use a LOCK signal on the bus to assist

in making RWM an atomic operation. So, why "this OLD method of

locking the bus" is not good for creating mutual exclusion . .
among threads of the system with multiple cores each core

running multiple threads?

Answer: It causes undesirable traffic on the Bus due to 0 0 0 o

constant polling (called busy polling or spinning) by other

threads. In our EE560 4C*4T/C (4 cores x 4 Treads per each core), we have a total of 16 threads.

If the SCU of one core (on behalf of one thread in that core) gets to do RMW and locks SDBL,

the rest of the 15 threads (3+4+4+4=15)%keep polling.

Moreover, a BUS is no more used to interconnect processors in a shared memory
multiprocessor system. In EE557, you will be taught a variety of MINs (Memory

Interconnection Networks): Crossbar, hypercube, Omega, Butterfly, Mesh, Torus...

then

https://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/lectures/18_interconnects.pdf

Notice that, allowing shared variables such as SDB Lock (Student Data Base
Lock) to be cached into private L1 caches reduces traffic on the bus (or memory
interconnection network) to L2 cache, which saves clocks and reduces congestion
on the bus (or memory interconnection network).

Also note that cache coherency alone cannot provide the needed mutual
exclusion between competing threads which are competing simultaneously to set a
lock (such as the SDB Lock semaphore above). Cache coherency along with LL and
SC instructions provides the needed Mutual Exclusion in Multiprocessors.

1.4.2. FMM (transferring FMM responsibility)

In write-back cache, with cache coherency protocol in place, flushing of
dirty blocks to the MM (FMM = Flush to the MM) is postponed as far in time as
possible. M-to-I state transition for a block in one L1 cache to allow I-to-M
state transition for the same block in another L1 does not cause FMM as the
“updating MM responsibility” is transferred from the first L1 to the second L1
cache for that block. This is to reduce traffic on the bus and/or the MIN
(memory interconnection network).

1.4.3 There will be a question on Cache coherency in a multi-processor
system. Please practice reading MSI and MOESI (and MOOESI) protocol state
diagrams and be in a position to complete a few missing state transition arrows
and/or a few missing state transition conditions. If you are given the same
diagram drawn in a different format, see if you get confused or will still be
able to draw missing lines and missing state transition conditions.

Proie/

BusRdX/Flush BusRdX

Figure 8.1 State-trmmition dhagram of 5 MOEST protecet Figure S.12 Stase- tramsicion dhagram of » MOEST protecol.

is for p
EE560 R/FMM stands fon_ Replacement/FlushToMM
Priri- R/=-- stands for just Replacement.

1.5. CMP/CMT
OS-controlled process switching (software multithreading) vs. hardware

multithreading,

Non-Blocking Cache, division of duties between CCU and SCU, MSHRs (Miss
Status Handling Registers), RMHRs (Read MSHRs) and WMSHRs (Write MSHRs)

Puunamico DPatzar mole a OMP o e~ fararnd ~ 3 Yo L B I S] oo BV I ramim A 1o
Byramte—Power—makes—CcMP—apreferred—chorce—over—uniprocessor—with—rampea—up
freggeney+ This subtopic is cancelled for Fall 2020 onwards.
BRI SI
Inmpact on CPI becagse of MEI (Mlss Rate Per .6 2 cLOCK ACCESS TIME
Instruction) (per instruction includes all « MPL: 5%
instructions such as ADD and SUB besides LW «BRIET /0
and SW). i.e. impact of MPI of L1 on CPI Cache L1 2ND LEVEL CACHE CAN BE VERY
.) X LARGE, 50 THAT THE PENALTY
and impact of MPI of LZ caches on CPI. I OF L1-CACHE MISSES IS MOSTLY
THE ACCESS TIME TO L2
+E6. 12MB, 20 CLOCK ACCESS TIME
CPI =1 + 0.05*20 + 0.01*300 Cache L2 o MPT: 1%
=1 + 1 + 3 = 5 i - UNITFTES /0
+ON-CHIP AS WELL.
https: ffen.vikipedia.org/wiki/Skylake (microarchitecture})
Example: : Main memory _
ample:Intel Skylake Core i7 processor of year 2015 OFF-CHIP ACCESSES TO DRAM ARE L2
4 core, each core with 32KB I.Cache, 32KB D.Cg¢ache for L1, and MISSES
+E.6., 300 CLOCK ACCESS TIME

256KB unified cache for I2. 13 of 8 MB is common to all the cores.

Which of the two below incur high overhead in context switching?
(1) the software multithreading (context switch by the operating system)
(ii) the hardware multithreading (thread switching is through thread-selection

stage)
Is "frequent context/thread switch" common with the software multithreading

or the hardware multithreading?

Describe/identify (a) coarse-grain multi-threading (b) fine-grain

multi-threading (c) SMT Simultaneous multi-threading

Is it true that "rollback due to cache miss" happens only in two of the
three types of multi-threading? Yes, only in coarse grain and fine grain (which
are used in IoI-IoE-IoC) but not in SMT (which is used in IoI-OoE-IoC).

Intel's HTT (Hyper Threading Technology) is essentially same as

(fine-grain / coarse-grain / simultaneous) multi-

threading.

1.6. Locks for mutual exclusion, synchronization, barrier synchronization,

ISA support for synchronization: instructions LL and the SC in MIPS.
EE457 Synchronization MutualExclusion LL SC.pdf

2.8 ISA support (example: LL and SC in MIPs) is necessary to provide mutual exclusion (circle all applicable)
(a) between interacting processes in a multi-processing system

(b) between interacting threads running on different cores

(c) between interacting threads running on the same core

(However / Even) if there is only one thread per core and you have established
MOESI between cores, atomic test and set (can/ cannot) be guaranteed with the simple
(ordinary) lw and sw instructions.

In MIPs ISA, LL stands for and SC stands for

ISA support (example: LL and SC in MIPs) is necessary to provide mutual exclusion (circle all applicable)
(a) between interacting processes in a multi-processing system <= on a single core single threaded system disabling
@ between 'mteracting threads nmning on different cores interrupts provides needed mutual exclusion.
(© between interacting threads running on the same core

Even L (However / Even) if there 1s only one thread per core and vou have established
MOESI between cores, atomic test and set_¢an nat (can/cannot) be guaranteed with the simple
(ordinary) Iw and sw instructions.

In MIPs ISA, LL stands forlLoad Qt“kaé (ﬂmﬁ {oc ku)}md SC stands for low COF\CL.EO!'\QJ\

Fall 2014

Final

M

Fall 2014 Final

=
(o]
-
i
3
~
[¢]
w

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter9/EE457_Synchronization_MutualExclusion_LL_SC.pdf

Explanation for {a) above: In an old uniprocessor (single core single thread system), it is possible JVm cade
that a competing process (PO) may be suspended (because of timer interrupt) after executing the

first two lines of the naive code on the right. Now P1 becomes active, completes all the lines Lock0O: LW R2, lock

of the code on the right, obtains SDBL lock (Student Database Lock), starts modifying the database. BNEZ R2, LockO
Before it gets to complete all the modifications that it started, another timer interrupt comes and SW R1, lock

P1 gets suspended, And PO gets started. PO does not execute the first two lines of the code and

Rl1 =1
proceeds with lines 3 and 4 and thinks that it has obtained the lock and starts modifying the /7

same database. L. .

To prevent the above, interrupts are disabled before PO (or P1) starts the code on the right. ; Database modification

case (b) above in the case of the old x86 processors such as 80486: The x86 processor ISA allows Unlock: SW RO, lock;
prefixing the assembly language instructions with a "lock" prefix to help locking the bus for // RO =0
a sequence of such "lock" prefixed instructions. This avoids RWM race between cores.

Explanation for case (b) above: Here again the code executing on Core 1 and
Core 2 will not try to re-execute the first two lines of the naive code as

shown diagrammatically.
[Core_1:]

Say all three cores have the block consisting of the lock in S (SHARED) state.

I LockO: LockO: | LockO:
LW R2, lock LW R2, lock
BNEZ R2, LockO BNEZ R2, LockO

All three SCU's run to the Bus to announce BusUpGr. Say Core_0 wins. Core_0 executes SW in M state.
ISW R1, lock |

Core_1 and Core_2 try to say on the bus Bus RdX. Say Core_1 succeeds. Core_1 executes SW.

Core_2 says Bus RdX. it succeeds. Core_2 executes SW.

ISW R1, lock |

Now all three cores simultaneously think that they have the lock :(

Please make sure that you understand the 1l4-scene sequence on the 5 pages (27
to 31) of EE457 Synchronization MutualExclusion LL SC.pdf

1.7 Final lecture: In the final lecture we provided a sneak preview of three
items (i) Tomasulo Part 3, (ii) PCIe, and (iii) GPGPU.

What is included for the final exam from the final lecture (mainly Tomasulo
Part 3 preview) is stated in the three pages 27/34, 28/34, and 29/34 of the
following pdf. Yes, you are responsible for these pages.
https://viterbi-web.usc.edu/www-classes/engr/ee-

s/457/EE457 Classnotes/eedb57 final lec Fall2022.pdf

You certainly need to know the following acronyms from slide 28.

PRF stands for Physical Register File.

FRL stands for Free Register List.

RAT stands for Register Alias Table.

FRAT stands for Frontend RAT and is updated by the dispatch unit whereas
RRAT stands for the Retirement RAT and is updated by the Instruction Retirement unit.

What does VLIW stand for? Very Long Instruction Word
Compared to a Superscalar CPU (where instruction scheduling is done in

hardware), a VLIW CPU depends more (more/ less) on the compiler technology for
instruction scheduling.

PCIe intro is moved to a different slide set, and you are not responsible for that.

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter9/EE457_Synchronization_MutualExclusion_LL_SC.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/ee457_final_lec_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/ee457_final_lec_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/ee457_final_lecture/EE560_PCIe_Intro_to_EE457.pdf

and unsigned numbers,
filler question)

2. Computer Arithmetic Chapter 4 Part 1 signed
(ALU lab) (less important, but may be used as a

Lab #3

al +1h oah +h 1l eatgarne +1o iAot o na anA Nt an A o oo rorf£1] CRE N N
A=’ l.J.J.J_\J\—A.\jJ.J. CIT - _LJ_UVVJ_Ll\j W \.iu O CITUTTOo [Eyawy \CEuaw 8 1o COTTCr CIIacT TT A4 C L1 1IOwW (S yaw s TT
mmndarflany (2 4oy oyt o £ S norat o) aarn S~ o +hoarl
srderflow—{in—twoparts—of anoperationr—ecan——ecancelecach other
eed 57 Final—Spring20i2-pdf (042 is interesting,Sp2018 students, pleasego—through+it)
457 T2~ Qo ~DONT D o]l AL
457—Final—Spring2bli2—seolpdf
— Oty Fast oadders {(EE457 chd p2 rl.pdfr——aredncluded +f coveredin
T ot 11 NDiaccoiiaan n T+ ~ + EQemm e+ 1 ot 11 . TRAET ~ 4D 1 TIASE
Leeture/biseussion—Wateh—+the 50-—minvte teectur R4 ST —ehd—p2—rt—wim
T e o4 4+ N IO S P £ TN [ENENEPAP I RGN
1TTOTT T (S i) wy aITIINMaO T IOUIT . I UtJCJ_(J.L_L\JJ.J
PP S I S O, [NP ol A
L o T lllu_LL_J_b/_LJ.CJ_».J L& = = = A\ Bp W AW & A\w S
e] Q2 o~ Oz~ CDIT A oA N T2 Nz~ CODIT A o7 A (1 oo T e s
- e k_)_LJ.l_dJ_ _Y_/_LC v \J.CQ_L\jJ.l IO LllLAJ___L_/_Y =)y O A3 JJ_\jJ.l A= =) J_ll.lt/ L CTalT Ty
I SCEE SR 2N oA e o £ 77 EV SN E D)
but—maybeused—as—afitlterecuestion)
Mizl+3 ~xza] OCDIT Aacieorn Ly Wt 7 o4 g anA DA A3+ 2
Mutsiepet P —design—fromPboth Ist—ed—and 2nd—edition
4. Pipelined CPU design:
One major question or a few medium questions.
Understanding of all parts of Lab 7 [Part 1, Part 2, and Part 3 (all P3

subparts SP1l, SP2, SP3, and SP4),
eed457 lab7 P3 simple pipeline.pdf]
ee457 pipe 3elem adder Verilog.pdf
ee457 lab7 P3 simple pipeline.pdf
ee457 lab7 P3 simple pipeline RTL coding.pdf

I assume that EVERY student has done all assigned subparts of the lab 7.

including question 7 of
is IMPORTANT.

(1st ed.
are definitely important.
done 1lab 6 Part 5,

Pipelined CPU design from both late branch

branch (3rd ed. and your lab 6 Block Diagram)

Lab #6 (parts 4, & 5). I know you have not
able to handle that in the form of a question
noting that replication of comparators can be avoided.
You should be able to handle any Forwarding, Stalling,
any design. Browse through Lab 6 Part 4 0#3.1 slides on removing redundant
forwarding mux pair (FMP). Watch the video .avi if needed.

Block Diagram)

Time-Space diagrams: You should be able to draw (fill-in) or analyze.

load-word delay-slot and branch delay-slot <= Load-word delay slot
implementation is very easy (reduce or eliminate stalling by HDU).

and early

but you should be
if needed. The point is basically

and Flushing needs of

On the other-hand the Branch-delay slot implementation is complex and clumsy,

particularly in the presence of instruction cache miss. Since Branch-delay
slots are no more used and are not being implemented,
giving implementation-related major question involving branch delay slots

together with ICMT (Instruction Cache Miss True) and DCMT (Data Cache Miss
True) in the Midterm or the Final exams. Hence, I ask that you skip O#4 of

ee457 Final Fall2014.pdf

we have recently stopped

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2012_exams/ee457_Final_Spring2012.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2012_exams/ee457_Final_Spring2012_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter4/EE457_ch4_p2_r1.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter4/EE457_ch4_p2_r1.wmv
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter4/ee457_How_does_CLA_work_by_Wei-Jen.ppt
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P1/ee457_pipe_3elem_adder_Verilog.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/ee457_lab7_P3_simple_pipeline.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/P3_SP3_SP4/ee457_lab7_P3_simple_pipeline_RTL_coding.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter6/Control_Hazards/block_diagrams/ee457_late_branch.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter6/Control_Hazards/block_diagrams/ee457_early_branch_block_diagram.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab6/ee457_pipe_cpu_r3_Fall2009_Part5_cut-short_in_Fall2018.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab6_part4_lecture_r3/ee457_Lab6_Part4_r3_for_lec_Q_3_1.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab6_part4_lecture_r3/ee457_Lab6_Part4_r3_for_lec_Q_3_1.avi
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2014_exams/ee457_Final_Fall2014.pdf

5. Chapter #7 Cache (HW#6) and Virtual memory (HW#7):

One major question or two medium-size questions.

Virtual Memory: Please look at Q#7 of Fall 2021 Midterm exam.pdf sol.pdf
eed457 MT Sp2012 VM Ques sol.pdf , eed457 MT Sp2013 VM Ques sol.pdf ,

and then the Spring 2015 Final question 6.on virtual memory.

Please look at the Q#4.1 Q#4.2 and Q#4.6 of Spring 2017 Midterm and
sol.pdf on Cache.

Questions could be "reverse-engineering" type questions like in the
Midterm of Fall 2015 Q#3.

VIPT (Virtually Indexed Physically Tagged)
vs.
PIPT (Physically Indexed Physically Tagged)
The 9-stage pipeline became an 8-stage pipeline because the I Cache Tag Check

stage is hidden behind the instruction decoding stage.

Similarly, can you hide the D Cache Tag Check stage? No! Memory write operation for SW is not like a
stand-alone register writing operation, hence it cannot be aborted at the end of a clock if the

D Cache Tag check fails. So, you cannot hide the D Cache Tag Check stage.

Further if we use VIPT for both I Tag Access, and D Tag Access, we can reduce
the 8-stage pipeline to a 6-stage pipeline! But VIPT requires either very large

virtual pages or very small L1 caches =

Degree of set associativity need not be a power of 2 but the number of sets
shall be a power of 2. Since TLB is a cache of PT, we can think of all three
cache mappings (Fully Associative, Set-Associative, and Direct) for TLB also.
However (perhaps) Direct mapping for TLB is never used because of performance
degradation due to conflicts.

Block size in TLB: Unlike in cache, the block size in TLB is always a one
entry. Entries in TLB are always singular.

6. Lab related questions including Verilog coding. Please review the following.
6.1 Labs

6.1.1 Slides providing hints for Lab 7 P3 Subpart3: Hints.pdf and Hints.avi
6.1.2 FIFO lab (Part 1 only .pdf) Fifo is less important for the final as I

have tested substantially in the midterm exam.

/A 2 DPAR Tk (ot D ~lsz ~AFN
O- T+ o NI oo (pPaLC oy AT Wi

Consider the following statement in a clocked always procedural block:

C <= A + B;

Suppose you are asked (in an interview) the following question:

Is it necessary that Verilog statements producing the above A and B appear in
your Verilog code before the above statement, so that you follow the simple
rule that says, “produce before you consume”?

Mr. Bruin: Yes, of course. I did Lab 7 SP3 :)

Mr. Trojan: A and/or B shall be produced before consuming only if they are
intermediate variables produced using blocking assignments in the same clocked
block.

For example, if A and B are outputs of some combinational operations such as a
subtractor or an adder, then those statements should be written before the
above statement.

In the following cases "producing before consuming" rule does not apply:

(i) If A and B are themselves register outputs (produced using non-blocking
assignments in the same or in a different clocked always block)

(ii) If A and B are combinational outputs produced in a separate combination
always block or by using concurrent assign statements (outside the clocked
always block where they are consumed) .

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_MT_Fall2021.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_MT_Fall2021_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2012_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2013_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_MT_Fall2015_sol.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/P3_SP3_SP4/RTL_Coding_Style_support_material/Lab7_Part3_Subpart3_RTL_Lab_Hints.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/P3_SP3_SP4/RTL_Coding_Style_support_material/Lab7_Part3_Subpart3_RTL_Lab_Hints.avi
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab_manual_Fl2010/EE457_FIFO/FIFO_Design_and_Application.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_ROB/IoE_OoE_Divider.pdf

Note: We all know that the interaction between concurrent items (such as always
blocks and concurrent assign statements) 1is governed by event-driven simulation
and not by ordering of the concurrent items in our code.

6.3 If you had not previously looked at the following Verilog question, please
go through it. It emphasizes the fact that only upstream combinational logic
(such as NSL) [and not the downstream combinational logic (such as the OFL)]
can be coded in the clocked always block along with the register.

Q#1.1 of EE354L Fall 2017 Midterm exam.pdf solution.pdf

7. Basic Logic Design:

You may be tested on basic logic design from EE354L. We do not expect anyone to
have difficulty with the preparatory material from EE354L listed under the
EE457 Study Plan for first 3 weeks.pdf

Please go through Q#3 of Fall 2022 final.

https://viterbi-web.usc.edu/www-classes/engr/ee-s/254/EE354L_Fall2017_Exams/ee354L_MT_Fall2017.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/254/EE354L_Fall2017_Exams/ee354L_MT_Fall2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2023_exams/EE457_Study_Plan_for_first_3_weeks.pdf

