
4/27/2023

Dear EE457 students,

Final Exam (~33.5%): Wednesday, May 10, 2023, 03:30 PM - 06:30 PM PST in THH 301
Exam Hall for Zoom exam for remote students (and extra time for the OSAS students) THH 125

Final Exam is comprehensive, but it focuses on later topics (Midterm topics included). We hope to use the following
two scales (as stated in the MT score sheet, the syllabus, and the plan for the first three weeks).

Quiz + MT + Final = 12+26+30 = 68

Quiz + MT + Final = 10+21+37 = 68

I assume that you had gone through your midterm exam solution and understood the same. Sometimes, I may

ask a question in the final which is related to a question on the midterm.

Also please go through the two “short homework assignments” on the advanced topics.

Approximate breakdown of the Final exam:

My desire for the final exam is as follows:

1. Ask questions in the Virtual memory and Cache topic, weighing about 15% of

the final exam.

Reproduced is an extract from your midterm preparation guide on these two

topics.

====

4. Chapter #7 Cache and HW#6, you need to complete the assigned parts of HW#6

 One major question and one medium question.

The following two questions are important typical questions.

Do go through them and be ready to get 100% on this topic.

4.1 Q#5 on cache organization from the Spring 2015 Midterm:
http://www-classes.usc.edu/ engr/ee-s/457/ee457_ Spring2015_exams/ee457_MT_ Spring2015.pdf
http://www-classes.usc.edu/ engr/ee-s/457/ee457_ Spring2015_exams/ee457_MT_ Spring2015_sol.pdf
4.2 Q#5 on cache mapping techniques from Fall 2010 MT.

 Please go through its solution and then *time* yourself to solve it.
 https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2010_exams/ee457_MT_Fall2010.pdf
 https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2010_exams/ee457_MT_Fall2010_sol.pdf

4.3 Please look at the Q#4.1 Q#4.2 and Q#4.6 of Spring 2017 Midterm and

 sol.pdf on Cache.

 Questions could be "reverse-engineering" type questions like in the

 Midterm of Fall 2015 Q#3.

9. Virtual Memory topic (normally covered after midterm but covered early in recent semesters including this
semester)

9.0. This semester, I finished covering the first lecture of the two lectures on

Virtual memory on 3/8/2023 and 3/9/2023. My lecture on Monday 3/20 and Tuesday 3/21

will cover the material for the 2nd lecture.

But in case you wished that the lecture is available now before the Spring break,

yes, I made a copy of the Fall 2022 lecture and posted in the week #9 lectures, and

it is available now on D2L!

Go to Table of Contents => Week 9 (3/6-3/10) => 2nd lecture of the two-lecture

series on the "Virtual Memory" topic from Fall 2022

9.1. Q#4 from MT of Fall 2014. Please see item 7 above.

9.2. HW#7 and its solution ee457_HW7.pdf ee457_HW7_solution_r1.pdf

9.2. Please look at ee457_MT_Sp2012_VM_Ques_sol.pdf , ee457_MT_Sp2013_VM_Ques_sol.pdf ,

9.3. Please go through the Spring 2015 Final question 6.on virtual memory.

9.4. Some discussion about VIPT and PIPT

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_MT_Spring2015.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_MT_Spring2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2010_exams/ee457_MT_Fall2010.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2010_exams/ee457_MT_Fall2010_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_MT_Fall2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_HW7.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_HW7_solution_r1.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2012_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2013_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015_sol.pdf

 VIPT (Virtually Indexed Physically Tagged)

 vs.

 PIPT (Physically Indexed Physically Tagged)

The 9-stage pipeline became an 8-stage pipeline because the I_Cache_Tag_Check stage

is hidden behind the instruction decoding stage.
Similarly, can you hide the D_Cache_Tag_Check stage? No! Memory write operation for SW is not like a stand-

alone register writing operation, hence it cannot be aborted at the end of a clock if the D_Cache_Tag check

fails. So, you cannot hide the D_Cache_Tag_Check stage.

Further if we use VIPT for both I_Tag Access, and D_Tag_Access, we can reduce the

8-stage pipeline to a 6-stage pipeline! But VIPT requires either very large virtual

pages or very small L1 caches . Hence you should not attempt to do VIPT to hide

stages! VIPT is a concept. It may not be practical in many cases.

Degree of set associativity does not need to be a power of 2 but the number of sets

shall be a power of 2. Since TLB is a cache of the PT, we can think of all three

cache mappings (Fully Associative, Set-Associative, and Direct) for the TLB also.

However (perhaps) Direct mapping for TLB is never used because of performance

degradation due to conflicts.

Block size in TLB: Unlike in cache, the block size in TLB is always a single entry.

Entries in TLB are always singular. Explanation: If you are going to Ralphs to buy

milk, you may buy bread also even if you are not sure if you needed it. That is

like bringing a block of 4 words where you are not sure if the other three words

will be useful. But, if you are going to buy a car, you do not buy an RV

(Recreation Vehicle) in anticipation that it may be useful!

But what’s the analogy? Well, when you bring a page from the disc to the main

memory, you just bring the page that you need; you do not bring a couple of more

pages. So, if we have an entry in the PT and you could find the PPFN given the VPN,

do not expect to find a block of entries (2 or 4 valid entries including the entry

you went for). Hence TLB entries (which are copies of selected PT entries) are

always singular!

====

2. One major design question (25%) and one analysis question (15%)

on Lab 7, Lab 6, and the single cycle CPU (total 40%)

i.e., Lab 7 all parts (i.e. Part 1 and 2 and Part 3 (SP1, SP2, SP3, SP4))

and Lab 6 Part 4 and Part 5

Look at the recent midterms and the finals

Also, please browse through EE457_Lab7_Quick_familiarity_test.pdf!

3. Advanced topics: (About 35% to 40% of the final) => Look at the recent

finals.

4. Rest of the 10% is covered by midterm topics and other miscellaneous topics

(Carry Look-ahead Adder CLA excluded).

Please make sure that you have enough rest on the night before

the exam so that you will be able to think and design during the exam.

Every semester, a few students keep awake all night, and then fail to answer

even simple questions because their minds are too tired to think.

Do not let this happen to you. EE457 exam is NOT about memorization.

Office hours during the week before the final: We will announce some hours, but the TA and

the Mentors have their finals too.

Good luck with your preparation.

Best of luck in all your exams,

Gandhi, Tejas, Abhipray, Shubham, Abhilash, Ziyu

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Exam_Prep/EE457_Lab7_Quick_familiarity_test.pdf

Some recommendations for your preparation

I have not written the exam yet. These are only recommendations.

It is not necessary that the exam is exactly based on this.

The exam is a closed-book exam like in the pre-Covid semesters.

The exam is comprehensive. However, Chapter #1, HW #1, Lab #1 (Min/Max),

Chapter #2, HW #2, Chapter #3, HW#3, Chapter #4, HW#4 (the Quiz topics) are not

important for the final as we tested them adequately in the quiz/midterm. In

recent semesters, we have not been covering the topic of a multi-cycle CPU.

Hence chapter #5 Part 2, HW#5b, Lab #4 P4 are excluded. However, the single

cycle CPU topic (chapter 5 Part 1 and HW#5a) is not excluded for the final

exam.

0. When looking at the previous years' final exams (very old finals), you need

to skip questions on the following topics as we have not been covering these

lately.

CLA (Carry Look-ahead Adders)

Non-linear pipelines

Fast Multipliers based on Carry-Save adders (Wallace Tree Multiplier)

Old exams from year 2011 and before are less important and are not provided.

Go through 3 to 4 of the most recent final exams (Fall 2022 and before) and

their solutions listed on D2L => Past Exams (which are also listed below) by

solving each question mentally and then going through the solution. Then try to

time yourself and answer one or two design questions from exams that you did

not go through.

--

Past Final Exams and Solutions:

Fall 2022 First go through Q#1 from the midterm, and then through Q#1 of the Final.

ee457_Final_Fall2022.pdf ee457_MT_Fall2022.pdf

ee457_Final_Fall2022_sol.pdf ee457_MT_Fall2022_sol.pdf

ee457_Final_Sp2022.pdf Skip Q#1

ee457_Final_Sp2022_sol.pdf Skip Q#1

ee457_Final_Fall2021.pdf

ee457_Final_Fall2021_sol.pdf

ee457_Final_Sp2021.pdf Skip Q#1

ee457_Final_Sp2021_sol.pdf Skip Q#1

ee457_Final_Fall2020.pdf Skip Q#1

ee457_Final_Fall2020_sol.pdf Skip Q#1

ee457_Final_Sp2020.pdf

ee457_Final_Sp2020_sol.pdf

ee457_Final_Fall2019.pdf

ee457_Final_Fall2019_sol.pdf

ee457_Final_Spring2019.pdf

ee457_Final_Spring2019_sol.pdf

ee457_Final_Fall2018.pdf

ee457_Final_Fall2018_sol.pdf

=================================== Focus on the above 9 exams.

ee457_Final_Spring2018.pdf (skip Q#2 on addition/subtraction overflows)

ee457_Final_Spring2018_sol.pdf

ee457_Final_Fall2017.pdf (skip Q#3 on a special processor for military, lengthy question)

ee457_Final_Fall2017_sol.pdf

ee457_Final_Spring2017.pdf

ee457_Final_Spring2017_sol.pdf

ee457_Final_Fall2016.pdf (skip Q#6 on CLA)

ee457_Final_Fall2016_sol.pdf

ee457_Final_Spring2016.pdf

ee457_Final_Spring2016_sol.pdf

ee457_Final_Fall2015.pdf (skip Q#2)

ee457_Final_Fall2015_sol.pdf (skip Q#2 as it is a clumsy design to make it a special processor for CIA)

ee457_Final_Spring2015.pdf (skip Q#1.2 on ROB as we did not do the ROB lab)

ee457_Final_Spring2015_sol.pdf

ee457_Final_Fall2014.pdf (Skip Q#4 as it is difficult. Moreover, I stopped asking questions involving a
branch delay slot together with a cache miss ICMT and DCMT)(skip Q#5 on CLA)

ee457_Final_Fall2014_sol.pdf

ee457_Final_Sp2014.pdf (skip Q#4 on CLA)

ee457_Final_Sp2014_sol.pdf

ee457_Final_Fall2013.pdf (skip Q#5 on CLA)

ee457_Final_Fall2013_sol.pdf

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_Final_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_MT_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_Final_Fall2022_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2022_exams/ee457_MT_Fall2022_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2022_exams/ee457_Final_Sp2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2022_exams/ee457_Final_Sp2022_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_Final_Fall2021.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_Final_Fall2021_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2021_exams/ee457_Final_Sp2021.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2021_exams/ee457_Final_Sp2021_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2020_exams/ee457_Final_Fall2020.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2020_exams/ee457_Final_Fall2020_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2020_exams/ee457_Final_Sp2020.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2020_exams/ee457_Final_Sp2020_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2019_exams/ee457_Final_Fall2019.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2019_exams/ee457_Final_Fall2019_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2019_exams/ee457_Final_Sp2019.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2019_exams/ee457_Final_Sp2019_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2018_exams/ee457_Final_Fall2018.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2018_exams/ee457_Final_Fall2018_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2018_exams/ee457_Final_Spring2018.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2018_exams/ee457_Final_Spring2018_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2017_exams/ee457_Final_Fall2017.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2017_exams/ee457_Final_Fall2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_Final_Spring2017.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_Final_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2016_exams/ee457_Final_Fall2016.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2016_exams/ee457_Final_Fall2016_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2016_exams/ee457_Final_Spring2016.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2016_exams/ee457_Final_Spring2016_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_Final_Fall2015.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_Final_Fall2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2014_exams/ee457_Final_Fall2014.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2014_exams/ee457_Final_Fall2014_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2014_exams/ee457_Final_Sp2014.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2014_exams/ee457_Final_Sp2014_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2013_exams/ee457_Final_Fall2013.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2013_exams/ee457_Final_Fall2013_sol.pdf

1. About 40% of the final exam will be dedicated to the 6 advanced topics and

chapter 9 in class notes.

Please go through questions on special topics in the recent final exams and

check your answers with the solutions. The three short homework assignments,

where we gathered selected questions from the recent exams, form a good

preparation on Tomasulo, Branch Prediction, and Cache Coherency and Mutual exclusion.

1.1. Exceptions:

 Difference between Precise exceptions and other exceptions.

 Undefined opcode to "extend" the ISA.

 Offending instruction shall remain silent until it reaches the WB stage.

 Exceptions are taken in _________ (temporal/program) order.

1.2. Branch Prediction:

 BPB (Branch Prediction Buffer) 1-bit vs. 2-bit branch predictors,

 BTB (Branch Target Buffer),

 Correlating branches, (m,n) predictor,

 Aliasing shall be avoided if you wish to predict from the _________

 (IF / ID) stage.

 RAS (Return Address Stack) is a hardware stack, quite shallow, yet...

 LIFO but circular! Do you continue to push into RAS (as a result of

 jal), even if it is full? Y

 RAS is not repaired or restored during branch misprediction, as it is quite

expensive to do so.

 The unrepaired/unrestored RAS may provide wrong return addresses for a few

occasions after the branch misprediction. This is considered acceptable since a

return address provided by RAS is considered to be a prediction anyways. The

actual return address is fetched by the JR $31 and is compared with the return

address predicted by the RAS. In case of mismatch, wrong-path instructions are

flushed (very much like in the case of a mispredicted conditional branch).

The actual return address is fetched by the JR $31 from $31 and an instruction

prior to that [lw $31, 0($29)] must have loaded $31 with the return address

saved on the system stack.

1.3. Out-of-Order Execution

 Several multiple-choice questions equivalent to one major question.

1.3.1. FIFO design review from EE201L -- Single clock FIFO and 2-clock FIFO,

and the FIFO lab. Yes, the two-clock FIFO is included.

Slides .pdf Webcast (44 minutes) .avi .wmv EE457 FIFO lab .pdf

Sample questions .pdf Also see questions from recent exams.

https://viterbi-web.usc.edu/www-classes/engr/ee-s/201/EE201L_CLASSNOTES/EE201L_CLASSNOTES_Ch11_memory/FIFO/FIFO_1_full-size.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/201/EE201L_CLASSNOTES/EE201L_CLASSNOTES_Ch11_memory/FIFO/FIFO_1.avi
https://viterbi-web.usc.edu/www-classes/engr/ee-s/201/EE201L_CLASSNOTES/EE201L_CLASSNOTES_Ch11_memory/FIFO/FIFO_1.wmv
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab_manual_Fl2010/EE457_FIFO/FIFO_Design_and_Application.pdf
https://www.dropbox.com/s/gt56kw56uiaxb8f/EE457_EE354L_FIFO_Questions.pdf?dl=0

1.3.2. IoI-OoE-OoC [Out-of-Order Execution with out-of-order completion

(Tomasulo Part 1 algorithm with a TAG FIFO and RST (without ROB))]

 RAW, WAW, WAR,

 WAW and WAR are called name dependencies, RAW is the true dependency.

 How WAW and WAR problems in registers are solved (are made to disappear)

 through register renaming, and why it is not practical to do the same

 for the WAW and WAR problems in memory locations (no MST memory status

 table as it is too big and too slow).

 Some details of register renaming: RST (Register Status Table), forwarding

through (from) CDB,

 neither source register IDs nor destination register IDs are carried into

the backend,

 a new TAG is allocated for the _____ (source/destination) register of each

instruction. And the same TAG is conveyed to subsequent instructions if their

source register ID matches with this junior-most senior instruction's

destination. This goes on until

 (a) the same register is used as a destination by another junior instruction

or

 (b) the original senior instruction has completed causing removal of his TAG

from the RST.

 TAGs need not be issued in any specific order, no virtual queue is formed by

TAGs, TAGs are just unique Tokens

 TAG FIFO: Is FIFO necessary or is it used for convenience?

 Dispatch unit, Dispatch is halted after a branch is issued until it is

resolved in this OoC design.

 But once the branch is resolved, dispatch continues and hence it is possible

that some of the instructions upstream of a conditional branch may coexist with

some instructions downstream of a conditional branch? Yes!

 Instructions in loops and how instructions from different iterations of the

loop can possibly co-exist in the backend. (Loop unrolling occurs dynamically)

 Issue Queues (also called reservation stations): is it necessary or

desirable (just desirable but not necessary) to maintain instructions in the order of

arrival? Necessary for LSQ, desirable for the rest of the queues.

 Purpose of the Issue Unit is to manage traffic on CDB. Does the Issue Unit

designer desire that every execution unit is a fixed-latency execution unit?

Yes! Then how about the lw instructions, which may incur cache miss? That is

why we have placed Load Buffer after the cache!

 Memory disambiguation rules

1.3.3. Out of Order Execution with in-order completion (Tomasulo algorithm with

ROB)

 Difference between completion of execution and retirement (commitment).

 This design is capable of supporting precise exceptions.

No RST here, because of difficulty in restoring (repairing) RST in the case

of branch misprediction.

No Tag FIFO. In place of a Tag like “LION” in Part I of Tomasulo, we use the ID

of the ROB slot pointed to by WP during Dispatch. This is called a “ROB Tag”.

 Each instruction going into the backend including sw (store word which does

not have a destination register) is allocated a ROB TAG.

 A virtual queue is formed because of the ROB slots associated with the

dispatched instructions.

 ROB is a FIFO, which is a circular buffer. First-in-first-out in ROB means

in-order completion!

 A ROB slot is allocated to a new instruction by the ___________ (Dispatch

Unit/Issue Unit).

 The ROB Tag allocated to a new instruction is ___________ (WP/WP+1/WP-

1/RP/RP+1/RP-1).

 At the committing end, the instruction pointed to by the ___________

(WP/WP+1/WP-1/RP/RP+1/RP-1) in ROB is allowed to commit if it has completed

execution in the backend.

 Upon completion of execution, an instruction comes on CDB and joins ROB at

 (the tail of the queue/the head of the queue / location allocated to it

previously at the time of dispatch).

 To do so, we need a random-access port on the ROB for _________________

(reading/writing/reading as well as writing).

 ROB search for the *youngest* senior (junior-most senior) instruction with

destination register ID matching with the source ID of the instruction being

dispatched. The ROB search is ____________________________ (a sequential search

/ an associative meaning parallel search). To perform prioritized associative

search for say $2 in a 32-location circular ROB, we used _________ (1/2/3/4)

32-input fixed priority resolvers. Two for $Rs and Two for $Rt for a 2-source

instruction such as add $Rd, $Rs, $Rt.

 Speculative execution: Based on branch prediction, instructions after a

branch (either at Target or at fall-through based on prediction) are

dispatched. A series of branch predictions can happen and branches _____

(1/2) 1. may get resolved in out of order 2. have to be resolved in-order only.

 In case of a misprediction, wrong-path instructions are flushed. All

instructions _______ (younger/elder) to the mispredicted branch instruction (or

mispredicted JR $31) are called wrong-path instructions. "Who is younger to the

branch instruction" is inferred by computing the distance of all instructions

with respect to the senior-most instruction (pointed to by the ___ (WP/RP)).

There ____ (is a / is no) need for comparing the ROB Tag of an instruction in

the backend with the ROB Tag of the mispredicted branch. Then, what is the

purpose of announcing on CDB the ROB Tag of the mispredicted branch, if other

instructions in backend do not want to compare their ROB Tags with this? The

mispredicted branch is already announcing its distance from RP!

Answer: Well, the ROB needs to adjust its WP to the ROB Tag of the mispredicted

branch in order to flush the wrong-path instructions in the ROB.

 Distance = (ROB tag of the instruction - RP) mod_32 (mod_32 if 32 is the

depth of the ROB *and* if we use a 5-bit ROB tag).

 In EE201L and in the FIFO lab, we taught two methods of distinguishing the

EMPTY state of the FIFO from the FULL state of the FIFO.

 For our ROB (a 32-location FIFO), we use 5-bit pointers for WP and RP and

perform depth calculation by doing the mod-32 subtraction:

 Depth = [WP - RP] mod 32

 However, when [WP == RP], the ROB can be empty or FULL. We can use a

separate Flip-Flop to record whether the ROB was most recently running Almost-

Full or Almost-Empty and use this information to interpret [WP == RP] as

indicating FULL or EMPTY respectively.

 Another method is to use (n+1)-bit pointers. For example, for the 32-

location ROB, we could use 6-bit pointers for WP and RP. Then we need to

perform mod_64 subtraction (note: mod_64 and not mod_32) subtraction to

calculate the depth: Depth = [WP - RP] mod_64

 In this case, WP-RP = 000000 represents __________ (EMPTY/FULL) and

WP-RP = 100000 represents __________ (EMPTY/FULL). In our EE560, it had so

happened that the ROB designer used 6-bit pointers internal to ROB, all other

designers external to ROB have used 5-bot pointers. And there was an

interesting way to reconcile these two designs!

 RAS (Return Address Stack): Even a 4-deep hardware stack (RAS) is able to

predict return addresses fairly well.

 RAS _____ (is /is not) repaired, when you flush a bunch of wrong-path

instructions, which may include some jal and some jR instructions, which may

have caused some pushes to RAS and some pops from RAS respectively.

RAS, being circular, soon repairs itself! JR $31 carries with itself the

predicted return address and compares with the actual $31’s contents. If they

mismatch, it announces misprediction on CDB and conveys the actual content to

the Dispatch unit. Wrong-path instructions in the Backend, in the ROB, and in

the IFQ (Instruction Prefetch Queue) are flushed and instructions at the right

return address start fetching.

1.4. Chapter 9 and cache coherency protocols (MSI, MOESI)

1.4.1 Mutual Exclusion, RWM Race:

OLD method to avoid RMW race: Make all shared variables such

as the Student Data Base Lock (SDBL) uncacheable on the

other side of the bus. Use a LOCK signal on the bus to assist

in making RWM an atomic operation. So, why "this OLD method of

locking the bus" is not good for creating mutual exclusion

among threads of the system with multiple cores each core

running multiple threads?

Answer: It causes undesirable traffic on the Bus due to

constant polling (called busy polling or spinning) by other

threads. In our EE560 4C*4T/C (4 cores x 4 Treads per each core), we have a total of 16 threads.

If the SCU of one core (on behalf of one thread in that core) gets to do RMW and locks SDBL, then

the rest of the 15 threads (3+4+4+4=15)keep polling.

Moreover, a BUS is no more used to interconnect processors in a shared memory

multiprocessor system. In EE557, you will be taught a variety of MINs (Memory

Interconnection Networks): Crossbar, hypercube, Omega, Butterfly, Mesh, Torus...

https://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/lectures/18_interconnects.pdf

 Notice that, allowing shared variables such as SDB_Lock (Student Data Base

Lock) to be cached into private L1 caches reduces traffic on the bus (or memory

interconnection network) to L2 cache, which saves clocks and reduces congestion

on the bus (or memory interconnection network).

 Also note that cache coherency alone cannot provide the needed mutual

exclusion between competing threads which are competing simultaneously to set a

lock (such as the SDB_Lock semaphore above). Cache coherency along with LL and

SC instructions provides the needed Mutual Exclusion in Multiprocessors.

1.4.2. FMM (transferring FMM responsibility)

 In write-back cache, with cache coherency protocol in place, flushing of

dirty blocks to the MM (FMM = Flush to the MM) is postponed as far in time as

possible. M-to-I state transition for a block in one L1 cache to allow I-to-M

state transition for the same block in another L1 does not cause FMM as the

“updating MM responsibility” is transferred from the first L1 to the second L1

cache for that block. This is to reduce traffic on the bus and/or the MIN

(memory interconnection network).

1.4.3 There will be a question on Cache coherency in a multi-processor

system. Please practice reading MSI and MOESI (and MOOESI) protocol state

diagrams and be in a position to complete a few missing state transition arrows

and/or a few missing state transition conditions. If you are given the same

diagram drawn in a different format, see if you get confused or will still be

able to draw missing lines and missing state transition conditions.

1.5. CMP/CMT

OS-controlled process switching (software multithreading) vs. hardware

multithreading,

 Non-Blocking Cache, division of duties between CCU and SCU, MSHRs (Miss

Status Handling Registers), RMHRs (Read MSHRs) and WMSHRs (Write MSHRs)

 Dynamic Power makes CMP a preferred choice over uniprocessor with ramped-up

frequency. This subtopic is cancelled for Fall 2020 onwards.

 Which of the two below incur high overhead in context switching?

(i) the software multithreading (context switch by the operating system)

(ii) the hardware multithreading (thread switching is through thread-selection

stage)

 Is "frequent context/thread switch" common with the software multithreading

or the hardware multithreading?

 Describe/identify (a) coarse-grain multi-threading (b) fine-grain

 multi-threading (c) SMT Simultaneous multi-threading

 Is it true that "rollback due to cache miss" happens only in two of the

three types of multi-threading? Yes, only in coarse grain and fine grain (which

are used in IoI-IoE-IoC) but not in SMT (which is used in IoI-OoE-IoC).

 Intel's HTT (Hyper Threading Technology) is essentially same as

 ___________________ (fine-grain / coarse-grain / simultaneous) multi-

threading.

1.6. Locks for mutual exclusion, synchronization, barrier synchronization,

ISA support for synchronization: instructions LL and the SC in MIPS.

EE457_Synchronization_MutualExclusion_LL_SC.pdf

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter9/EE457_Synchronization_MutualExclusion_LL_SC.pdf

Explanation for case (b) above: Here again the code executing on Core_1 and

Core_2 will not try to re-execute the first two lines of the naive code as

shown diagrammatically.

Please make sure that you understand the 14-scene sequence on the 5 pages (27

to 31) of EE457_Synchronization_MutualExclusion_LL_SC.pdf

1.7 Final lecture: In the final lecture we provided a sneak preview of three

items (i) Tomasulo Part 3, (ii) PCIe, and (iii) GPGPU.

What is included for the final exam from the final lecture (mainly Tomasulo

Part 3 preview) is stated in the three pages 27/34, 28/34, and 29/34 of the

following pdf. Yes, you are responsible for these pages.

https://viterbi-web.usc.edu/www-classes/engr/ee-

s/457/EE457_Classnotes/ee457_final_lec_Fall2022.pdf
You certainly need to know the following acronyms from slide 28.

What does VLIW stand for? Very Long Instruction Word

Compared to a Superscalar CPU (where instruction scheduling is done in

hardware), a VLIW CPU depends more (more/ less) on the compiler technology for

instruction scheduling.

PCIe intro is moved to a different slide set, and you are not responsible for that.

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter9/EE457_Synchronization_MutualExclusion_LL_SC.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/ee457_final_lec_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/ee457_final_lec_Fall2022.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/ee457_final_lecture/EE560_PCIe_Intro_to_EE457.pdf

2. Computer Arithmetic Chapter 4 Part 1 signed and unsigned numbers, Lab #3

(ALU lab)(less important, but may be used as a filler question)

Go through the following two questions and understand that an overflow and an

underflow (in two parts of an operation) can cancel each other!

ee457_Final_Spring2012.pdf (Q#2 is interesting, Sp2018 students, please go through it)

ee457_Final_Spring2012_sol.pdf

 Only Fast adders (EE457_ch4_p2_r1.pdf) are included if covered in
Lecture/Discussion. Watch the 50-minute lecture: EE457_ch4_p2_r1.wmv

 Look at the animation of CLA operation.

 Fast multipliers are excluded.

3. Single Cycle CPU design and multicycle CPU design (less important,

 but may be used as a filler question):

 Multicycle CPU design from both 1st ed. and 2nd edition.

 HW#5a, HW#5b, Lab #4

4. Pipelined CPU design:

 One major question or a few medium questions.

 Understanding of all parts of Lab 7 [Part 1, Part 2, and Part 3 (all P3

subparts SP1, SP2, SP3, and SP4), including question 7 of

ee457_lab7_P3_simple_pipeline.pdf] is IMPORTANT.

ee457_pipe_3elem_adder_Verilog.pdf
ee457_lab7_P3_simple_pipeline.pdf
ee457_lab7_P3_simple_pipeline_RTL_coding.pdf
I assume that EVERY student has done all assigned subparts of the lab 7.

 Pipelined CPU design from both late branch (1st ed. Block Diagram) and early

 branch (3rd ed. and your lab 6 Block Diagram) are definitely important.

 Lab #6 (parts 4, & 5). I know you have not done lab 6 Part 5, but you should be

able to handle that in the form of a question if needed. The point is basically

noting that replication of comparators can be avoided.

You should be able to handle any Forwarding, Stalling, and Flushing needs of

any design. Browse through Lab 6 Part 4 Q#3.1 slides on removing redundant

forwarding mux pair (FMP). Watch the video .avi if needed.

 Time-Space diagrams: You should be able to draw (fill-in) or analyze.

 load-word delay-slot and branch delay-slot <= Load-word delay slot

implementation is very easy (reduce or eliminate stalling by HDU).

On the other-hand the Branch-delay slot implementation is complex and clumsy,

particularly in the presence of instruction cache miss. Since Branch-delay

slots are no more used and are not being implemented, we have recently stopped

giving implementation-related major question involving branch delay slots

together with ICMT (Instruction Cache Miss True) and DCMT (Data Cache Miss

True) in the Midterm or the Final exams. Hence, I ask that you skip Q#4 of

ee457_Final_Fall2014.pdf .

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2012_exams/ee457_Final_Spring2012.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2012_exams/ee457_Final_Spring2012_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter4/EE457_ch4_p2_r1.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter4/EE457_ch4_p2_r1.wmv
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter4/ee457_How_does_CLA_work_by_Wei-Jen.ppt
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P1/ee457_pipe_3elem_adder_Verilog.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/ee457_lab7_P3_simple_pipeline.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/P3_SP3_SP4/ee457_lab7_P3_simple_pipeline_RTL_coding.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter6/Control_Hazards/block_diagrams/ee457_late_branch.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter6/Control_Hazards/block_diagrams/ee457_early_branch_block_diagram.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab6/ee457_pipe_cpu_r3_Fall2009_Part5_cut-short_in_Fall2018.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab6_part4_lecture_r3/ee457_Lab6_Part4_r3_for_lec_Q_3_1.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab6_part4_lecture_r3/ee457_Lab6_Part4_r3_for_lec_Q_3_1.avi
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2014_exams/ee457_Final_Fall2014.pdf

5. Chapter #7 Cache (HW#6) and Virtual memory (HW#7):

 One major question or two medium-size questions.

 Virtual Memory: Please look at Q#7 of Fall 2021 Midterm exam.pdf sol.pdf

 ee457_MT_Sp2012_VM_Ques_sol.pdf , ee457_MT_Sp2013_VM_Ques_sol.pdf ,

 and then the Spring 2015 Final question 6.on virtual memory.

 Please look at the Q#4.1 Q#4.2 and Q#4.6 of Spring 2017 Midterm and

 sol.pdf on Cache.

 Questions could be "reverse-engineering" type questions like in the

 Midterm of Fall 2015 Q#3.

 VIPT (Virtually Indexed Physically Tagged)

 vs.

 PIPT (Physically Indexed Physically Tagged)

The 9-stage pipeline became an 8-stage pipeline because the I_Cache_Tag_Check

stage is hidden behind the instruction decoding stage.
Similarly, can you hide the D_Cache_Tag_Check stage? No! Memory write operation for SW is not like a

stand-alone register writing operation, hence it cannot be aborted at the end of a clock if the

D_Cache_Tag check fails. So, you cannot hide the D_Cache_Tag_Check stage.

Further if we use VIPT for both I_Tag Access, and D_Tag_Access, we can reduce

the 8-stage pipeline to a 6-stage pipeline! But VIPT requires either very large

virtual pages or very small L1 caches

Degree of set associativity need not be a power of 2 but the number of sets

shall be a power of 2. Since TLB is a cache of PT, we can think of all three

cache mappings (Fully Associative, Set-Associative, and Direct) for TLB also.

However (perhaps) Direct mapping for TLB is never used because of performance

degradation due to conflicts.

Block size in TLB: Unlike in cache, the block size in TLB is always a one

entry. Entries in TLB are always singular.

6. Lab related questions including Verilog coding. Please review the following.

6.1 Labs

6.1.1 Slides providing hints for Lab 7 P3 Subpart3: Hints.pdf and Hints.avi

6.1.2 FIFO lab (Part 1 only .pdf) Fifo is less important for the final as I

have tested substantially in the midterm exam.

6.1.3 ROB lab (part 2 only .pdf)

6.2

Consider the following statement in a clocked always procedural block:

C <= A + B;

Suppose you are asked (in an interview) the following question:

Is it necessary that Verilog statements producing the above A and B appear in

your Verilog code before the above statement, so that you follow the simple

rule that says, “produce before you consume”?

Mr. Bruin: Yes, of course. I did Lab 7 SP3 :)

Mr. Trojan: A and/or B shall be produced before consuming only if they are

intermediate variables produced using blocking assignments in the same clocked

block.

For example, if A and B are outputs of some combinational operations such as a

subtractor or an adder, then those statements should be written before the

above statement.

In the following cases "producing before consuming" rule does not apply:

(i) If A and B are themselves register outputs (produced using non-blocking

assignments in the same or in a different clocked always block)

(ii) If A and B are combinational outputs produced in a separate combination

always block or by using concurrent assign statements (outside the clocked

always block where they are consumed).

https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_MT_Fall2021.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2021_exams/ee457_MT_Fall2021_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2012_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/EE457_Classnotes/EE457_Chapter7/ee457_Ch7_P2_VirtualM/ee457_MT_Sp2013_VM_Ques_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2015_exams/ee457_Final_Spring2015_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Spring2017_exams/ee457_MT_Spring2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Fall2015_exams/ee457_MT_Fall2015_sol.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/P3_SP3_SP4/RTL_Coding_Style_support_material/Lab7_Part3_Subpart3_RTL_Lab_Hints.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_lab7_P3/P3_SP3_SP4/RTL_Coding_Style_support_material/Lab7_Part3_Subpart3_RTL_Lab_Hints.avi
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_lab_manual_Fl2010/EE457_FIFO/FIFO_Design_and_Application.pdf
https://ece-classes.usc.edu/ee457/ee457_lab_manual_Fl2010/ee457_ROB/IoE_OoE_Divider.pdf

Note: We all know that the interaction between concurrent items (such as always

blocks and concurrent assign statements) is governed by event-driven simulation

and not by ordering of the concurrent items in our code.

6.3 If you had not previously looked at the following Verilog question, please

go through it. It emphasizes the fact that only upstream combinational logic

(such as NSL) [and not the downstream combinational logic (such as the OFL)]

can be coded in the clocked always block along with the register.

Q#1.1 of EE354L Fall 2017 Midterm exam.pdf solution.pdf

7. Basic Logic Design:

You may be tested on basic logic design from EE354L. We do not expect anyone to

have difficulty with the preparatory material from EE354L listed under the

EE457_Study_Plan_for_first_3_weeks.pdf

Please go through Q#3 of Fall 2022 final.

https://viterbi-web.usc.edu/www-classes/engr/ee-s/254/EE354L_Fall2017_Exams/ee354L_MT_Fall2017.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/254/EE354L_Fall2017_Exams/ee354L_MT_Fall2017_sol.pdf
https://viterbi-web.usc.edu/www-classes/engr/ee-s/457/ee457_Sp2023_exams/EE457_Study_Plan_for_first_3_weeks.pdf

