

Digital System Design
with SystemVerilog

Prentice Hall PTR’s Modern Semiconductor Design Series
provides semiconductor engineers with the latest information and

techniques from the world’s leading authorities.

Visit informit.com/semiconductor for a
complete list of available publications.

The Prentice Hall
Modern Semiconductor

Design Series

Digital System Design
with SystemVerilog

Mark Zwolinski

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Zwolinski, Mark.

Digital system design with SystemVerilog / Mark Zwolinski.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-704579-4 (hardback : alk. paper)
1. Verilog (Computer hardware description language) 2. Electronic digital
computers–Design and construction. 3. Computer simulation. I. Title.

TK7885.7.Z86 2009
621.390285’53—dc22 2009034771

Copyright c© 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN 13: 978-0-13-704579-2

ISBN 10: 0-13-704579-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2009

Contents

List of Figures xiii

List of Tables xix

Preface xxi

Acknowledgments xxvii

About the Author xxix

1. Introduction 1
1.1 Modern Digital Design 1
1.2 Designing with Hardware Description Languages 2

1.2.1 Design Automation 2
1.2.2 What is SystemVerilog? 2
1.2.3 What is VHDL? 3
1.2.4 Simulation 3
1.2.5 Synthesis 4
1.2.6 Reusability 4
1.2.7 Verification 5
1.2.8 Design Flow 6

1.3 CMOS Technology 8
1.3.1 Logic Gates 8
1.3.2 ASICs and FPGAs 10

1.4 Programmable Logic 16
1.5 Electrical Properties 19

1.5.1 Noise Margins 19
1.5.2 Fan-Out 20

Summary 22
Further Reading 22
Exercises 23

v

vi Contents

2. Combinational Logic Design 25
2.1 Boolean Algebra 25

2.1.1 Values 25
2.1.2 Operators 25
2.1.3 Truth Tables 26
2.1.4 Rules of Boolean Algebra 28
2.1.5 De Morgan’s Law 28
2.1.6 Shannon’s Expansion Theorem 29

2.2 Logic Gates 29
2.3 Combinational Logic Design 30

2.3.1 Logic Minimization 32
2.3.2 Karnaugh Maps 33

2.4 Timing 37
2.5 Number Codes 40

2.5.1 Integers 40
2.5.2 Fixed Point Numbers 41
2.5.3 Floating Point Numbers 41
2.5.4 Alphanumeric Characters 42
2.5.5 Gray Codes 42
2.5.6 Parity Bits 43

Summary 43
Further Reading 44
Exercises 44

3. Combinational Logic Using SystemVerilog Gate Models 47
3.1 Modules and Files 47
3.2 Identifiers, Spaces, and Comments 48
3.3 Basic Gate Models 50
3.4 A Simple Netlist 51
3.5 Logic Values 52
3.6 Continuous Assignments 52

3.6.1 SystemVerilog Operators 52
3.7 Delays 53
3.8 Parameters 56
3.9 Testbenches 56

Summary 58
Further Reading 58
Exercises 58

Contents vii

4. Combinational Building Blocks 61
4.1 Multiplexers 61

4.1.1 2 to 1 Multiplexer 61
4.1.2 4 to 1 Multiplexer 63

4.2 Decoders 63
4.2.1 2 to 4 Decoder 63
4.2.2 Parameterizable Decoder 65
4.2.3 Seven-Segment Decoder 66

4.3 Priority Encoder 68
4.3.1 Don’t Cares and Uniqueness 68

4.4 Adders 69
4.4.1 Functional Model 69
4.4.2 Ripple Adder 70
4.4.3 Tasks 71

4.5 Parity Checker 72
4.6 Three-State Buffers 73

4.6.1 Multi-Valued Logic 73
4.7 Testbenches for Combinational Blocks 74

Summary 76
Further Reading 76
Exercises 76

5. SystemVerilog Models of Sequential Logic Blocks 79
5.1 Latches 79

5.1.1 SR Latch 79
5.1.2 D Latch 81

5.2 Flip-Flops 82
5.2.1 Edge-Triggered D Flip-Flop 82
5.2.2 Asynchronous Set and Reset 82
5.2.3 Synchronous Set and Reset and Clock Enable 84

5.3 JK and T Flip-Flops 86
5.4 Registers and Shift Registers 88

5.4.1 Multiple Bit Register 88
5.4.2 Shift Registers 88

5.5 Counters 90
5.5.1 Binary Counter 90
5.5.2 Johnson Counter 93
5.5.3 Linear Feedback Shift Register 95

viii Contents

5.6 Memory 97
5.6.1 ROM 98
5.6.2 SRAM 98
5.6.3 Synchronous RAM 99

5.7 Sequential Multiplier 100
5.8 Testbenches for Sequential Building Blocks 102

5.8.1 Clock Generation 102
5.8.2 Reset and Other Deterministic Signals 104
5.8.3 Checking Responses 104

Summary 106
Further Reading 106
Exercises 106

6. Synchronous Sequential Design 109
6.1 Synchronous Sequential Systems 109
6.2 Models of Synchronous Sequential Systems 110

6.2.1 Moore and Mealy Machines 110
6.2.2 State Registers 110
6.2.3 Design of a Three-Bit Counter 112

6.3 Algorithmic State Machines 114
6.4 Synthesis from ASM Charts 119

6.4.1 Hardware Implementation 119
6.4.2 State Assignment 121
6.4.3 State Minimization 125

6.5 State Machines in SystemVerilog 129
6.5.1 A First Example 129
6.5.2 A Sequential Parity Detector 132
6.5.3 Vending Machine 133
6.5.4 Storing Data 135

6.6 Testbenches for State Machines 137
Summary 138
Further Reading 138
Exercises 138

7. Complex Sequential Systems 143
7.1 Linked State Machines 143
7.2 Datapath/Controller Partitioning 147
7.3 Instructions 150
7.4 A Simple Microprocessor 151
7.5 SystemVerilog Model of a Simple Microprocessor 156

Contents ix

Summary 165
Further Reading 165
Exercises 165

8. Writing Testbenches 167
8.1 Basic Testbenches 168

8.1.1 Clock Generation 169
8.1.2 Reset and Other Deterministic Signals 169
8.1.3 Monitoring Responses 169
8.1.4 Dumping Responses 169
8.1.5 Test Vectors from a File 170

8.2 Testbench Structure 170
8.2.1 Programs 172

8.3 Constrained Random Stimulus Generation 174
8.3.1 Object-Oriented Programming 174
8.3.2 Randomization 176

8.4 Assertion-Based Verification 178
Summary 182
Further Reading 183
Exercises 183

9. SystemVerilog Simulation 185
9.1 Event-Driven Simulation 185
9.2 SystemVerilog Simulation 189
9.3 Races 192

9.3.1 Avoiding Races 193
9.4 Delay Models 194
9.5 Simulator Tools 195

Summary 196
Further Reading 196
Exercises 196

10. SystemVerilog Synthesis 199
10.1 RTL Synthesis 200

10.1.1 Non-Synthesizable SystemVerilog 201
10.1.2 Inferred Flip-Flops and Latches 202
10.1.3 Combinational Logic 206
10.1.4 Summary of RTL Synthesis Rules 210

10.2 Constraints 210
10.2.1 Attributes 211

x Contents

10.2.2 Area and Structural Constraints 212
10.2.3 full_case and parallel_case Attributes 214

10.3 Synthesis for FPGAs 216
10.4 Behavioral Synthesis 218
10.5 Verifying Synthesis Results 225

10.5.1 Timing Simulation 226
Summary 228
Further Reading 228
Exercises 228

11. Testing Digital Systems 231
11.1 The Need for Testing 231
11.2 Fault Models 232

11.2.1 Single-Stuck Fault Model 233
11.2.2 PLA Faults 233

11.3 Fault-Oriented Test Pattern Generation 234
11.3.1 Sensitive Path Algorithm 235
11.3.2 Undetectable Faults 237
11.3.3 The D Algorithm 237
11.3.4 PODEM 240
11.3.5 Fault Collapsing 241

11.4 Fault Simulation 242
11.4.1 Parallel Fault Simulation 243
11.4.2 Concurrent Fault Simulation 244

Summary 246
Further Reading 246
Exercises 247

12. Design for Testability 251
12.1 Ad hoc Testability Improvements 252
12.2 Structured Design for Test 253
12.3 Built-In Self-Test 255

12.3.1 Example 257
12.3.2 Built-In Logic Block Observation (BILBO) 261

12.4 Boundary Scan (IEEE 1149.1) 264
Summary 272
Further Reading 272
Exercises 272

Contents xi

13. Asynchronous Sequential Design 277
13.1 Asynchronous Circuits 277
13.2 Analysis of Asynchronous Circuits 281

13.2.1 Informal Analysis 281
13.2.2 Formal Analysis 283

13.3 Design of Asynchronous Circuits 285
13.4 Asynchronous State Machines 293
13.5 Setup and Hold Times and Metastability 297

13.5.1 The Fundamental Mode Restriction
and Synchronous Circuits 297

13.5.2 SystemVerilog Modeling of Setup and Hold
Time Violations 298

13.5.3 Metastability 300
Summary 302
Further Reading 302
Exercises 302

14. Interfacing with the Analog World 305
14.1 Digital-to-Analog Converters 306
14.2 Analog-to-Digital Converters 307
14.3 Verilog-AMS 310

14.3.1 Verilog-AMS Fundamentals 310
14.3.2 Contribution Statements 313
14.3.3 Mixed-Signal Modeling 314

14.4 Phased-Locked Loops 319
14.5 Verilog-AMS Simulators 323
Summary 323
Further Reading 324
Exercises 324

A. SystemVerilog and Verilog 325
A.1 Standards 325
A.2 SystemVerilog and Verilog Differences 326

Answers to Selected Exercises 331

Bibliography 347

Index 349

This page intentionally left blank

List of Figures

1.1 RTL synthesis design flow. 8
1.2 Small-scale integrated circuit. 9
1.3 PLA structure. 10
1.4 NMOS transistor structure. 11
1.5 MOS transistor symbols: (a) and (b) NMOS, (c) and (d) PMOS. 12
1.6 MOS inverters: (a) NMOS, (b) PMOS, (c) CMOS. 13
1.7 (a) CMOS NAND; (b) CMOS NOR. 14
1.8 CMOS AND-OR-INVERT. 15
1.9 CMOS three-state buffer. 15
1.10 CMOS transmission gate circuits. (a) Multiplexer; (b) XOR;

(c) D latch. 16
1.11 PAL structure . 18
1.12 CPLD structure. 19
1.13 FPGA logic cell . 19
1.14 Transfer characteristic of a CMOS inverter. 20
1.15 (a) CMOS inverter driving CMOS inverter; (b) equivalent circuit. 22
2.1 Logic symbols. 29
2.2 Equivalent circuit representations. 30
2.3 Two-input Karnaugh map. 33
2.4 Three-input Karnaugh map. 34
2.5 Four-input Karnaugh map. 34
2.6 Karnaugh map for a two-input function. 35
2.7 Groupings on a three-input Karnaugh map. 35
2.8 Groupings on a four-input Karnaugh map. 35
2.9 Exclusive OR grouping on a Karnaugh map. 36
2.10 Redundant grouping on a Karnaugh map. 36
2.11 “Don’t care” on a Karnaugh map. 37
2.12 Timing diagram for inverter. 37
2.13 Circuit with static 1 hazard. 38
2.14 Timing diagram for the circuit of Figure 2.13. 38

xiii

xiv List of Figures

2.15 Types of hazard. 39
2.16 Redundant term on a Karnaugh map. .39
2.17 Hazard-free circuit. 40
2.18 Gray code as shaft encoder. 42
2.19 Circuits for Exercise 2.1. 44
3.1 Simple combinational circuit. 51
3.2 NAND function with delay. 54
3.3 NAND function with inertial cancellation. 55
4.1 2 to 1 multiplexer. 62
4.2 4 to 1 multiplexer. 63
4.3 2 to 4 decoder. 64
4.4 Seven-segment display. 67
4.5 4 to 2 priority encoder. 68
4.6 Four-bit adder. 69
4.7 Even parity checker. 72
4.8 Three-state buffer. 73
5.1 SR latch. 80
5.2 Level-sensitive D latch. 81
5.3 Positive edge-triggered D flip-flop. 82
5.4 Positive edge-triggered D flip-flop with asynchronous reset and set. . . . 83
5.5 Positive edge-triggered D flip-flop with synchronous reset. 84
5.6 Positive edge-triggered D flip-flop with clock enable. 85
5.7 (a) D flip-flop; (b) JK flip-flop; (c) T flip-flop. 87
5.8 Four-bit register. 88
5.9 Universal shift register. 89
5.10 Binary counter. 91
5.11 Ripple counter. 92
5.12 Johnson counter. .93
5.13 LFSR. 95
5.14 Device for Exercises 5.11 and 5.12. 107
6.1 General sequential system. 110
6.2 Moore and Mealy machines. 111
6.3 Setup and hold times. 112
6.4 Structure of a 3-bit counter. 113
6.5 K-maps for a 3-bit counter. 113
6.6 A 3-bit counter circuit. 114
6.7 Traffic signal problem. 115
6.8 State machine of a traffic signal controller. 115
6.9 ASM chart of a traffic signal controller. 116

List of Figures xv

6.10 ASM chart symbols. 116
6.11 ASM chart showing clock cycles. 117
6.12 Conditional and unconditional outputs. 118
6.13 Timing diagram for Figure 6.12. 118
6.14 K-maps for a traffic signal controller. 120
6.15 Circuit for a traffic signal controller. 120
6.16 ASM chart for a sequence detector. 122
6.17 K-maps with don’t cares. 123
6.18 ASM chart of a vending machine (Part 1). 126
6.19 ASM chart of a vending machine (Part 2). 127
6.20 State and output table for a vending machine. 127
6.21 State table with states G and H removed. 128
6.22 State table with states E, G, and H removed. 128
6.23 ASM chart for Exercise 6.12. 141
7.1 ASM chart of a traffic signal controller including the timer. 144
7.2 Linked ASM charts for a traffic signal controller. 145
7.3 ASM chart of a traffic signal controller with counter. 145
7.4 Timing diagram of linked ASM charts. 146
7.5 Timing diagram showing delays. 147
7.6 Controller/datapath partitioning. 147
7.7 Extended ASM chart notation. 148
7.8 ASM chart of a partitioned design. 149
7.9 Implementation of a datapath. 149
7.10 Datapath of a central processing unit (CPU). .152
7.11 ASM chart of a microprocessor. 154
7.12 Alternative form of the microprocessor ASM chart.155
7.13 Modification of the ASM chart to include branching. 156
8.1 Modular testbench structure. 171
9.1 Event list. 186
9.2 Circuit with zero delays. 189
9.3 SystemVerilog stratified event queue. 190
9.4 Waveforms generated by simulation of an N-bit adder.196

10.1 High-level design flow. 200
10.2 Circuit synthesized from an incomplete case statement. 204
10.3 Asynchronous circuit synthesized from a feedback assignment. 204
10.4 Circuit synthesized by NBAs. 205
10.5 Circuit synthesized using a blocking assignment. 206
10.6 Two versions of a combinational circuit: (a) smaller, slower;

and (b) larger, faster. 211

xvi List of Figures

10.7 Basic timing constraint. 213
10.8 Input and output timing constraints. 214
10.9 Data dependency graph. 221
10.10 ASAP schedule. 221
10.11 ALAP schedule. 222
10.12 Resource constrained schedule. 222
10.13 Mapping of operations onto resources. 223
10.14 Schedule showing registers. .224
10.15 Hardware implementation of a first-order filter. .224
10.16 ASM chart of a controller. 225
11.1 Fault probabilities. .233
11.2 PLA fault models. 234
11.3 Example circuit for test generation. 236
11.4 Circuit with redundancy. 237
11.5 Example circuit for the D algorithm. 238
11.6 Example circuit for the D algorithm. 239
11.7 Example circuit for fault simulation. 242
11.8 Concurrent fault simulation of the circuit of Figure 11.7.245
11.9 Circuit for Exercises 11.3 and 11.4. 247
11.10 Circuit for Exercise 11.8. 248
11.11 Circuit for Exercise 11.9. 248
11.12 Circuit for Exercise 11.11. 249
12.1 Testability of a node. 252
12.2 Resets add testability. 253
12.3 SISO principle. 254
12.4 BIST principle. 256
12.5 LFSR. 256
12.6 SISR. 257
12.7 MISR. 257
12.8 Circuit for a BIST example. 258
12.9 BILBO. 261
12.10 BILBO in normal mode. 262
12.11 BILBO in scan mode. 262
12.12 BILBO in LFSR/MISR mode. 262
12.13 Circuit partitioning for a self-test. 263
12.14 Alternate circuit partitioning for a self-test. 263
12.15 Probe testing. 264
12.16 Circuit board faults. 265
12.17 Board with boundary scan. 266
12.18 Boundary scan architecture. 267

List of Figures xvii

12.19 TAP controller state diagram. 268
12.20 Boundary scan cell. 269
12.21 Logic outside boundary scan path. 270
12.22 IC with boundary scan. 271
12.23 Circuit for Exercise 12.4. 273
12.24 CPU datapath for Exercise 12.5. 273
13.1 Basic D latch. 279
13.2 Timing diagram for the circuit of Figure 13.1. 279
13.3 D latch with hazard removed. .280
13.4 Positive edge-triggered D flip-flop. 282
13.5 D latch with a virtual buffer. 283
13.6 Transition table for a D latch. 284
13.7 State table for a D latch. 284
13.8 Transitions in a state table. 285
13.9 States in a design example. 286
13.10 State transition diagram for a design example. .286
13.11 Primitive flow table. 286
13.12 State and output table. 287
13.13 Transition table. 288
13.14 Simulation of an asynchronous circuit example: (a) with race;

(b) without race. 289
13.15 Transition table with a critical race. 289
13.16 Simulation of an asynchronous circuit with a cycle. 290
13.17 Transition table with a cycle. 290
13.18 Modified state table. 291
13.19 Simplified state transition diagram. 291
13.20 Circuit with an essential hazard. 292
13.21 Transition table with an essential hazard. 292
13.22 Synchronizer design. 301
13.23 Circuit for Exercise 13.5. 303
13.24 State diagram for Exercise 13.6. .304
14.1 Binary-weighted ladder DAC. 306
14.2 Binary-weighted R-2R ladder DAC. 307
14.3 Flash ADC. 308
14.4 Tracking ADC. 309
14.5 Delta-sigma ADC. 309
14.6 PLL structure. 320

This page intentionally left blank

List of Tables

1.1 Typical Voltage Levels for CMOS Circuits with a Supply Voltage
of 2.5 V . 20

1.2 Input and Output Currents for 74ALS Series TTL Gates 21
2.1 NOT Operation . 26
2.2 AND Operation . 27
2.3 OR Operation . 27
2.4 NAND Operation . 27
2.5 NOR Operation . 27
2.6 XOR Operation . 27
2.7 Minterms and Maxterms . 31
2.8 Truth Table for Z = A + Ā · B . 32
2.9 Truth Table for Z = Ā · B + Ā · B . 34
2.10 Two-Dimensional Parity . 43
3.1 Arithmetic and Logical Operators in Order of Decreasing

Precedence . 48
3.2 Truth Table for Exercise 3.3 . 59
4.1 Truth Table for 2 to 4 Decoder . 64
4.2 Priority Encoder . 69
5.1 Truth Table of SR Latch . 80
5.2 Truth Table of D Flip-Flop . 86
5.3 Truth Table of JK Flip-Flop . 86
5.4 Truth Table of T Flip-Flop. .86
5.5 Universal Shift Register .89
5.6 Johnson Counter . 94
5.7 Format Specifiers . 105
5.8 Special Characters . 106
6.1 Truth Table of a Counter . 112
6.2 State and Output Table . 119
6.3 Transition and Output Table . 120
6.4 State and Output Table for Sequence Detector . 123

xix

xx List of Tables

6.5 Transition and Output Table for Sequence Detector 123
6.6 Transition Table Implied by Don’t Cares . 124
7.1 Control Signals of a Microprocessor . 153

10.1 Summary of RTL Synthesis Rules . 210
11.1 Truth Tables for the D Algorithm . 239
11.2 Intersection Rules for the D Algorithm . 240
11.3 Fault Collapsing Rules . 241
11.4 Parallel Fault Simulation of the Circuit of the Figure 11.7 244
12.1 State Sequence for a BIST Example . 260
12.2 Perturbed State Sequence for a BIST Example . 260
12.3 BILBO Modes . 262
12.4 TAP Controller Outputs for Exercise 12.11 . 275
13.1 Truth Table for an RS Latch . 281
13.2 States of an Example Asynchronous System . 285
13.3 Transition Table for Exercise 13.8 . 304

Preface

About This Book
When Digital System Design with VHDL was published, the idea of combining a
text on digital design with one on a hardware description language seemed novel.
At about the same time, several other books with similar themes were published.
Digital System Design with VHDL has now been adopted by several universities as a
core text and has been translated into Polish, Chinese, Japanese, and Italian. I had
thought about writing Digital System Design with Verilog, but I had (and still have)
some doubts about using Verilog as a teaching language despite its widespread use.
Soon after the second edition of Digital System Design with VHDL was published, a
new hardware description language appeared—SystemVerilog. This new language
removed many of my doubts about Verilog and even offered some noticeable ad-
vantages over VHDL. So the success of the first book and the appearance of the
new language convinced me that the time had come for a new edition.

This book is intended as a student textbook for both undergraduate and post-
graduate students. The majority of Verilog and SystemVerilog books are aimed at
practicing engineers. Therefore, some features of SystemVerilog are not described
at all in this book. Equally, aspects of digital design are covered that would not be
included in a typical SystemVerilog book.

Syllabuses for electrical, electronic, and computer engineering degrees vary
between countries and between universities or colleges. The material in this book
has been developed over a number of years for second- and third-year undergradu-
ates and for postgraduate students. It is assumed that students will be familiar with
the principles of Boolean algebra and combinational logic design. At the University
of Southampton, UK, the first-year undergraduate syllabus also includes introduc-
tions to synchronous sequential design and programmable logic. This book there-
fore builds upon these foundations. It has often been assumed that topics such as
SystemVerilog are too specialized for second-year teaching and are best left to final
year or postgraduate courses. There are several good reasons why SystemVerilog

xxi

xxii Preface

should be introduced earlier into the curriculum. With increasing integrated circuit
complexity, there is a need for graduates with knowledge of SystemVerilog and the
associated design tools. If left to the final year, there is little or no time for the
student to apply such knowledge in project work. Second, conversations with col-
leagues from many countries suggest that today’s students are opting for computer
science or computer engineering courses in preference to electrical or electronic
engineering. SystemVerilog offers a means to interest computing-oriented students
in hardware design. Finally, simulation and synthesis tools and FPGA design kits
are now mature and available relatively inexpensively to educational establishments
on PC platforms.

Structure of This Book
Chapter 1 introduces the ideas behind this book, namely the use of electronic design
automation tools and CMOS and programmable logic technology. We also consider
some engineering problems, such as noise margins and fan-out. In Chapter 2, the
principles of Boolean algebra and combinational logic design are reviewed. The
important matter of timing and the associated problem of hazards are discussed.
Some basic techniques for representing data are discussed.

SystemVerilog is introduced in Chapter 3 through basic logic gate models. The
importance of documented code is emphasized. We show how to construct netlists
of basic gates and how to model delays through gates. We also discuss parameter-
ized models. The idea of using SystemVerilog to verify models with testbenches is
introduced.

In Chapter 4, a variety of modeling techniques are described. Combinational
building blocks, buffers, decoders, encoders, multiplexers, adders, and parity check-
ers are modeled using a range of concurrent and sequential SystemVerilog coding
constructs. The SystemVerilog models of hardware introduced in this chapter and in
Chapters 5, 6, and 7 are, in principle, synthesizable, although discussion of exactly
what is supported is deferred until Chapter 10. Testbench design styles are again
discussed in Chapter 4. In addition, the IEEE dependency notation is introduced.

Chapter 5 introduces various sequential building blocks: latches, flip-flops, reg-
isters, counters, memory, and a sequential multiplier. The same style as Chapter 4
is used, with IEEE dependency notation, testbench design, and the introduction of
SystemVerilog coding constructs.

Chapter 6 is probably the most important chapter of the book and discusses
what might be considered the cornerstone of digital design: the design of finite state
machines. The ASM chart notation is used. The design process from ASM chart to

Preface xxiii

D flip-flops and next state and output logic is described. SystemVerilog models of
state machines are introduced.

In Chapter 7, the concepts of the previous three chapters are combined. The
ASM chart notation is extended to include coupled state machines and registered
outputs, and hence to datapath-controller partitioning. From this, we explain the
idea of instructions in hardware terms and go on to model a very basic micro-
processor in SystemVerilog. This provides a vehicle to introduce interfaces and
packages.

The design of testbenches is discussed in more detail in Chapter 8. After re-
capping the techniques given in earlier chapters, we go on to discuss testbench
architecture, constrained random test generation, and assertion-based verification.

SystemVerilog remains primarily a modeling language. Chapter 9 describes the
operation of a SystemVerilog simulator. The idea of event-driven simulation is first
explained, and the specific features of a SystemVerilog simulator are then discussed.

The other, increasingly important, role of SystemVerilog is as a language for
describing synthesis models, as discussed in Chapter 10. The dominant type of
synthesis tool available today is for RTL synthesis. Such tools can infer the existence
of flip-flops and latches from a SystemVerilog model. These constructs are described.
Conversely, flip-flops can be created in error if the description is poorly written,
and common pitfalls are described. The synthesis process can be controlled by
constraints. Because these constraints are outside of the language, they are discussed
in general terms. Suitable constructs for FPGA synthesis are discussed. Finally,
behavioral synthesis, which promises to become an important design technology, is
briefly examined.

Chapters 11 and 12 are devoted to the topics of testing and design for test. This
area has often been neglected, but is now recognized as being an important part of
the design process. In Chapter 11, the idea of fault modeling is introduced. This is
followed by test generation methods. The efficacy of a test can be determined by
fault simulation.

In Chapter 12, three important design-for-test principles are described: scan
path, built-in self-test (BIST), and boundary scan. This has always been a very dry
subject, but a SystemVerilog simulator can be used, for example, to show how a
BIST structure can generate different signatures for fault-free and faulty circuits.

We use SystemVerilog as a tool for exploring anomalous behavior in asyn-
chronous sequential circuits in Chapter 13. Although the predominant design style
is currently synchronous, it is likely that digital systems will increasingly consist
of synchronous circuits communicating asynchronously with each other. We intro-
duce the concept of the fundamental mode and show how to analyze and design

xxiv Preface

asynchronous circuits. We use SystemVerilog simulations to illustrate the problems
of hazards, races, and setup and hold time violations. We also discuss the problem
of metastability.

The final chapter introduces Verilog-AMS and mixed-signal modeling. Brief
descriptions of digital-to-analog converters (DACs) and analog-to-digital converters
(ADCs) are given. Verilog-AMS constructs to model such converters are given. We
also introduce the idea of a phase-locked loop (PLL) here and give a simple mixed-
signal model.

The Appendix briefly describes how SystemVerilog differs from earlier versions
of Verilog.

At the end of each chapter a number of exercises have been included. These
exercises are almost secondary to the implicit instruction in each chapter to sim-
ulate and, where appropriate, synthesize each SystemVerilog example. To perform
these simulation and synthesis tasks, the reader may have to write his or her
own testbenches and constraints files. The examples are available on the Web at
zwolinski.org.

How to Use This Book
Obviously, this book can be used in a number of different ways, depending on the
level of the course. At the University of Southampton, I have been using the material
as follows.

Second Year of MEng/BEng in Electronic Engineering
Chapters 1 and 2 are review material, which the students would be expected to read
independently. Lectures then cover the material of Chapters 3 through 7. Some of
this material can be considered optional, such as Sections 5.3 and 5.7. Additionally,
some constructs could be omitted if time is limited. The single-stuck fault model of
Section 11.2 and the principles of test pattern generation in Section 11.3, together
with the principles of scan design in Section 12.2, would also be covered in lectures.

Third Year of MEng/BEng in Electronic Engineering
Students would be expected to independently re-read Chapters 4 to 7. Lectures
would cover Chapters 8 to 13. Verilog-AMS, Chapter 14, is currently covered in a
fourth-year module.

In all years, students need to have access to a SystemVerilog simulator and an
RTL synthesis tool in order to use the examples in the text. In the second year, a group

Preface xxv

design exercise involving synthesis to an FPGA would be an excellent supplement
to the material. In the third year at Southampton, all students do an individual
project. Some of the individual projects will involve the use of SystemVerilog.

Web Resources
A Web site accompanies Digital System Design with SystemVerilog by Mark
Zwolinski. Visit the site at zwolinski.org. Here you will find valuable teaching and
learning material including all the SystemVerilog examples and links to sites with
SystemVerilog tools.

This page intentionally left blank

Acknowledgments

I would like to thank all those who pointed out errors in the VHDL versions of
this book.

I would also like to thank everyone involved in the commissioning and prepa-
ration of this book: Bernard Goodwin and Elizabeth Ryan at Prentice Hall, Madhu
Bhardwaj and Ben Kolstad at Glyph International, Susan Fox-Greenberg, who copy
edited the text, Danielle Shaw for proof-reading, and Jack Lewis for indexing. Any
errors are, however, my fault and not theirs!

Finally, I would like to thank several cohorts of students to whom I have deliv-
ered this material and whose comments have encouraged me to think about better
ways of explaining these ideas.

xxvii

This page intentionally left blank

About the Author

Mark Zwolinski is a full professor in the School
of Electronics and Computer Science, Univer-
sity of Southampton, United Kingdom. He is
the author of Digital System Design with VHDL,
which has been translated into four languages
and widely adopted as a textbook in universities
worldwide. He has published over 120 refereed
papers in technical journals and has been teach-
ing digital design and design automation to un-
dergraduate and graduate students for twenty
years.

xxix

This page intentionally left blank

1Introduction

In this chapter we will review the design process, with particular emphasis on the
design of digital systems using hardware description languages (HDLs) such as Sys-
temVerilog. The technology of CMOS (complementary metal oxide semiconductor)
integrated circuits will be briefly revised and programmable logic technologies will
be discussed. Finally, the relevant electrical properties of CMOS and programmable
logic are reviewed.

1.1 Modern Digital Design
Electronic circuit design has traditionally fallen into two main areas: analog and
digital. These subjects are usually taught separately, and electronics engineers tend
to specialize in one area. Within these two groupings there are further specializa-
tions, such as radio frequency analog design, digital integrated circuit design, and,
where the two domains meet, mixed-signal design. In addition, of course, software
engineering plays an increasingly important role in embedded systems.

Digital electronics is ever more significant in consumer goods. Cars have so-
phisticated control systems. Most homes now have personal computers. Products
that used to be thought of as analog, such as radio, television, and telephones, are
digital. Digital compact discs and MP3s have replaced analog vinyl for recorded
audio. With these changes, the lifetimes of products have lessened. In a period of

1

2 Introduction

less than a year, new models will probably have replaced all the digital electronic
products in your local store.

1.2 Designing with Hardware Description Languages
1.2.1 Design Automation
To keep pace with this rapid change, electronics products have to be designed
extremely quickly. Analog design is still a specialized (and well-paid) profession.
Digital design has become very dependent on computer-aided design (CAD)—also
known as design automation (DA) or electronic design automation (EDA). The
EDA tools allow two tasks to be performed: synthesis, which is the translation of a
specification into an actual implementation of the design; and simulation in which
the specification or the detailed implementation can be exercised in order to verify
correct operation.

Synthesis and simulation EDA tools require that the design be transferred from
the designer’s imagination into the tools themselves. This can be done by drawing a
diagram of the design using a graphical package. This is known as schematic capture.
Alternatively, the design can be represented in a textual form, much like a software
program. Textual descriptions of digital hardware can be written in a modified
programming language, such as C, or in HDL. Over the past 30 years, a number
of HDLs have been designed. Two HDLs are in common usage today: Verilog and
VHDL. Standard HDLs are important because they can be used by different CAD
tools from different tool vendors. In the days before Verilog and VHDL, every tool
had its own HDL, requiring laborious translation between HDLs, for example, to
verify the output from a synthesis tool with another vendor’s simulator.

1.2.2 What is SystemVerilog?
SystemVerilog is an HDL. In many respects, an HDL resembles a software program-
ming language, but HDLs have several features not present in languages such as C.

Verilog was first developed in the early 1980s. It is based on Hilo-2, which was a
language (and simulator) from Brunel University, UK. The company that first devel-
oped Verilog, Gateway Design Automation, was bought out by Cadence. In the early
1990s, Cadence put the language into the public domain, and in 1995, Verilog be-
came an IEEE (Institute of Electrical and Electronics Engineers) standard—1364.
In 2001, a new version of the standard was agreed upon, with many additional
features, and a further minor revision was agreed upon in 2005. Work is contin-
uing to extend Verilog to system-level modeling. This new language is known as

1.2 Designing with Hardware Description Languages 3

SystemVerilog, the latest version of which is 3.1a (the number assumes the 1995
version of Verilog was version 1.0 and the 2001 revision was 2.0). The language
became an IEEE standard, 1800, in 2005.

Verilog has also been extended to allow modeling of analog circuits (Verilog-A)
and again for mixed-signal modeling (Verilog-AMS).

1.2.3 What is VHDL?
During the same period of time, another HDL—VHSIC (Very High Speed Inte-
grated Circuit) HDL or VHDL—was developed for the U.S. Department of Defense
and was also standardized by the IEEE as standard 1076. There have been four ver-
sions of IEEE 1076, in 1987, 1993, 2002, and 2008. There have been other HDLs,
for example, Ella and UDL/I, but now Verilog and VHDL are dominant. Each
language has its champions and detractors. Objectively (if it is possible to take a
truly unbiased view), both languages have weaknesses, and it is futile getting into
arguments about which is best.

1.2.4 Simulation
Another HDL is, however, worthy of note. SystemC uses features of C++ to allow
modeling of hardware. At this time it is not possible to predict whether SystemC
might supersede SystemVerilog or VHDL. It is, however, worth noting that many
of the design style guidelines refer to all three languages.

An HDL has three elements that are seldom present in a programming language:
(1) concurrency, (2) representation of time, and (3) representation of structure.

Hardware is intrinsically parallel. Therefore, an HDL must be able to describe
actions that happen simultaneously. C (to choose a typical and widely used pro-
gramming language) is sequential.

Actions in hardware take a finite time to complete. Therefore, mechanisms are
needed to describe the passage of time.

The structure of hardware is significant. A C program can consist of functions
that are called and, having completed their task, no longer retain any sense of internal
state. On the other hand, gates or other hardware structures persist and have a state
even when they appear to be doing nothing.

SystemC allows these features to be described in a C-like language. Sys-
temVerilog (and VHDL) have these features built in.

Concurrency, time, and structure lead to another significant difference between
an HDL and a programming language. A C program can be compiled and executed
on a PC or workstation. SystemVerilog can be compiled, but needs a simulator to

4 Introduction

execute. The simulator handles the interactions between concurrent elements and
models the passage of time. The simulator also keeps track of the state of each
structural element. A number of SystemVerilog simulators are available.

Advocates of Verilog often argue that it is an easier language to learn than
VHDL. This is debatable (they are probably about the same) for one reason.
VHDL has a very well-defined simulation model. Two different VHDL simulators
are (almost) guaranteed to produce exactly the same simulations. The SystemVerilog
simulation model is more loosely defined. Unless you are very careful, two different
SystemVerilog simulators may produce different simulations. The intention of this
book is to show how to write models of hardware that will simulate and synthesize
with predictable behavior. For this reason, this book does not attempt to cover every
detail of the SystemVerilog language.

1.2.5 Synthesis
SystemVerilog is a hardware description language, not a hardware design language.
In the 1980s, digital simulation was a mature technology; automatic hardware syn-
thesis was not. (This argument applies equally to VHDL.) It is possible to write
models in SystemVerilog that do not and cannot correspond to any physically re-
alizable hardware. Only a subset of the language can be synthesized using current
register transfer level (RTL) synthesis tools. Moreover, RTL synthesis tools work
by recognizing particular patterns in the code and use those patterns to infer the
existence of registers. (RTL synthesis tools also optimize combinational logic, but
not much more.) Therefore, the style of SystemVerilog coding is important. An
IEEE standard for RTL synthesis—1364.1—was agreed upon in 2002. This defines
a subset of Verilog, and the meaning of that subset, of the 2001 revision of Verilog.

The hardware models in this book conform to an application of the 1364.1-2002
RTL synthesis standard to the SystemVerilog language. In other words, we will use
the synthesis standard as a style guide.

1.2.6 Reusability
The electronics industry is currently very keen on the idea of reuse. Integrated
circuits are so large and complex that it is almost impossible for one team to create
a design from scratch. Instead, it is expected that more and more of a design will
consist of parts reused from earlier projects or brought in from specialized design
companies. Clearly, if a design is to be reused, it has to be versatile. It has to be
either so common that everyone will want to use it, or adaptable such that it can be
used in a variety of designs.

1.2 Designing with Hardware Description Languages 5

At a simple level, imagine that you have been asked to design a 4-bit multiplier.
This can be done by setting the widths of the inputs and outputs to 4. You would also
need to set the widths of some internal registers. At a later date, you might be asked
to design a 13-bit adder. At a functional level (or RTL for a synthesizable design),
the difference between the two designs is simply a change of input, output, and
register widths. Both the new and original designs would have needed simulating
and synthesizing. It is possible you might make a mistake in changing your design
from 4 to 13 bits. This would require a debugging effort. Imagine instead that you
had designed an “n-bit” multiplier. This would be debugged once. When asked to
produce the 13-bit multiplier, you would simply plug the parameter “13” into the
model and take the rest of the day off! The idea of producing parameterizable designs
is therefore very attractive. We will, as far as is possible, design parameterizable,
reusable components.

We will also show how to write models that are likely to behave the same way in
different simulators and that synthesize with the same results with different synthesis
tools. Related to this is a need to ensure that the behavior after synthesis is the same
as the behavior before synthesis.

1.2.7 Verification
How do we know that a model accurately describes the hardware that we want
to build? Formal verification tools exist, but they are somewhat specialized and
difficult to use. Simulation is a much more common technique. In simulation, we
try to give a design as wide a range of inputs as possible in order to cover everything
that could happen to that design. This approach can apply to each individual part
and to the system as a whole. As the hardware model gets larger, the range of possible
behaviors increases. Therefore, it become harder to exhaustively test the model and
the simulation time grows. This is a disadvantage of using simulation as a verification
tool.

In this book, a number of examples are given. You are encouraged to investigate
these models by running simulations. To do this, you will need to provide test stimuli.
One of the factors that has made SystemVerilog so important is the ability to use
the language itself to describe these test stimuli. This may seem obvious—in the
1980s, this was an innovation; hardware modeling and test definitions were usually
done using entirely different languages. Later, hardware verification languages such
as Vera and e were developed, but many of their features have been absorbed into
SystemVerilog.

In the jargon, the test stimuli are defined in a “testbench.” A testbench is a
piece of SystemVerilog code that (conceptually) surrounds the model and defines the

6 Introduction

universe as seen by that model. Therefore, a testbench has no inputs or outputs (and
can be identified by this feature). Within a testbench, you might write a description
of a clock generator and define a sequence of inputs. You might also check the
responses from the model. Within the simulator, you can display the waveforms of
signals, even signals deep within the design.

Writing testbenches requires a coding style different than hardware modeling.
A testbench does not represent a piece of real hardware. Indeed, you should never
attempt to synthesize a testbench. You will just get pages of warning messages.
Again, the SystemVerilog simulation problem arises here. A testbench may behave
differently for different simulators. We will try to minimize this problem, but it is a
less precise art than writing portable RTL models.

Simulation can help to ensure that your design implements the specification
as accurately as is humanly possible (and humans are never capable of perfection).
We can, with a bit of luck, assume that the synthesis process correctly translates a
SystemVerilog description into gates and flip-flops. When thousands or millions of
the final integrated circuit are manufactured, it is inevitable that defects will occur
in a small (we hope) number of chips. These defects can be caused by, for example,
dirt or imperfections in the silicon. If these defects cause the electrical behavior
of the circuit to change, the circuit will not work correctly. Such faulty circuits
need to be detected at the time of manufacture. Fault simulation allows potential
faults in a circuit to be modeled and rapidly simulated. Another testbench or set
of testbenches and a fault simulator are needed to determine a minimal set of test
vectors to uncover all possible faults.

1.2.8 Design Flow
Most digital systems are sequential, that is, they have states, and the outputs depend
on the present state. Some early designs of computers were asynchronous; in other
words, the transition to a new state happened as soon as inputs had stabilized.
For many years, digital systems have tended to be synchronous. In a synchronous
system, the change of state is triggered by one or more clock signals. In order to
design reliable systems, formal design methodologies have been defined. The design
of a (synchronous sequential) digital system using discrete gates would therefore
proceed as follows.

1. Write a specification.

2. If necessary, partition the design into smaller parts and write a specification
for each part.

1.2 Designing with Hardware Description Languages 7

3. From the specification, draw a state machine chart. This shows each state of
the system and the input conditions that cause a change of state, together with
the outputs in each state.

4. Minimize the number of states. This is optional and may not be useful in all
cases.

5. Assign Boolean variables to represent each state.

6. Derive the next state and output logic.

7. Optimize the next state and output logic to minimize the number of gates
needed.

8. Choose a suitable placement for the gates in terms of which gates share
integrated circuits and where each integrated circuit is placed on the printed
circuit board.

9. Design the routing between the integrated circuits.

In general, steps 1 and 2 cannot be avoided. This is where the creativity of
the designer is needed. Most books on digital design concentrate on steps 3 to 7.
Steps 8 and 9 can be performed manually, but placement and routing was one of
the first tasks to be successfully automated. It is possible to simulate the design
at different stages if it is converted into a computer-readable form. Typically, in
order to perform the placement and routing, a schematic capture program would
be used at around step 7, such that the gate-level structure of the circuit would be
entered. This schematic could be converted to a form suitable for a logic simulator.
After step 9 has been completed, the structure of the circuit, including any delays
generated by the resistance and capacitance of the interconnect, could be extracted
and again simulated.

The implementation of digital designs on ASICs or field programmable gate
areas (FPGAs) therefore involves the configuration of connections between pre-
defined logic blocks. As noted, we cannot avoid steps 1 and 2, and steps 8 and 9
can be done automatically. The use of an HDL, here SystemVerilog, means that
the design can be entered into a CAD system and simulated at step 3 or 4, rather
than step 7. So-called RTL synthesis tools automate steps 6 and 7. Step 5 can be
automated, but now the consequences of a particular state assignment can be as-
sessed very quickly. Behavioral synthesis tools are starting to appear that automate
the process from about step 2 onwards. Figure 1.1 shows the overall design flow for
RTL synthesis-based design.

Because of this use of EDA tools to design ASICs and FPGAs, a book such as
this can concentrate on higher-level aspects of design, in particular the description

8 Introduction

SystemVerilog
RTL
Description

RTL
Simulation

SystemVerilog
Testbench

RTL
Synthesis

Structural
SystemVerilog

SystemVerilog
Netlist

Structural
Simulation

Place & Route
Back
Annotation

Implement-
ation

SDF Timing
Information

Timing
Simulation

Figure 1.1 RTL synthesis design flow.

of functional blocks in an HDL. Many books on digital design describe multiple
output and multi-level logic minimization, including techniques such as the Quine–
McCluskey algorithm. Here, we assume that a designer may occasionally wish to
minimize expressions with a few variables and a single output, but if a complex
piece of combinational logic is to be designed, a suitable EDA tool is available that
will perform the task quickly and reliably.

1.3 CMOS Technology
1.3.1 Logic Gates
The basic building blocks of digital circuits are gates. A gate is an electronic com-
ponent with a number of inputs and, generally, a single output. The inputs and the
outputs are normally in one of two states: logic 0 or logic 1. These logic values are

1.3 CMOS Technology 9

VCC

GND

Figure 1.2 Small-scale integrated circuit.

represented by voltages (for instance, 0 V for logic 0 and 2.5 V for logic 1) or cur-
rents. The gate itself performs a logical operation using all of its inputs to generate
the output. Ultimately, of course, digital gates are really analog components, but for
simplicity we tend to ignore their analog nature.

It is possible to buy a single integrated circuit containing, say, four identical
gates, as shown in Figure 1.2. (Note that two of the connections are for the positive
and negative power supplies to the device. These connections are not normally
shown in logic diagrams.) A digital system could be built by connecting hundreds
of such devices together—indeed many systems have been designed in that way.
Although the individual integrated circuits might cost as little as 10 cents each,
the cost of designing the printed circuit board for such a system and the cost of
assembling the board are very significant, and this design style is no longer cost
effective.

Much more complicated functions are available as mass-produced integrated
circuits, ranging from flip-flops to microprocessors. With increasing complexity
comes flexibility—a microprocessor can be programmed to perform a near-infinite
variety of tasks. Digital system design therefore consists of, in part, of taking standard
components and connecting them together. Inevitably, however, some aspect of the
functionality will not be available as a standard device. The designer is then left
with the choice of implementing this functionality from discrete gates or designing
a specialized integrated circuit to perform that task. While this latter task may appear
daunting, it should be remembered that the cost of a system will depend to a great

10 Introduction

extent not on the cost of the individual components but on the cost of connecting
those components together.

1.3.2 ASICs and FPGAs
The design of a high-performance, full-custom integrated circuit (IC) is, of course, a
difficult task. In full-custom IC design, everything, down to and including individual
transistors, may be designed (although libraries of parts are, of course, used).

The term ASIC is often applied to full-custom and semi-custom integrated cir-
cuits. Another class of integrated circuit is that of programmable logic. The earliest
programmable logic devices (PLDs) were programmable logic arrays (PLAs). These
consist of arrays of uncommitted logic and the configuration of the array is deter-
mined by applying a large (usually negative) voltage to individual connections. The
general structure of a PLA is shown in Figure 1.3. The PLA has a number of inputs
(A, B, C) and outputs (X, Y, Z), an AND-plane, and an OR-plane. Connections
between the inputs and the product terms (P, Q, R, S) and between the product
terms and outputs are shown; the remaining connections have been removed as
part of the programming procedure. Some PLAs may be reprogrammed electri-
cally, or by restoring the connections by exposing the device to ultraviolet light.
Programmable array logic (PAL) extends the idea of PLAs to include up to 12 flip-
flops. In recent years, programmable devices have become much more complex and
include complex PLDs (CPLDs) and FPGAs. FPGAs are described in more detail
in Section 1.4.

A B C Z

P
Q

R
S

Y X

AND-plane OR-plane

= Connection

Figure 1.3 PLA structure.

1.3 CMOS Technology 11

Even digital gates can be thought of as analog circuits. The design of individ-
ual gates is therefore a circuit design problem. Hence, there exists a wide variety
of possible circuit structures. Very early digital computers were built using vac-
uum tubes. These gave way to transistor circuits in the 1960s and 1970s. There
are two major types of transistor: bipolar junction transistors (BJTs) and field ef-
fect transistors (FETs). Logic families such as transistor–transistor logic (TTL) and
emitter–collector logic (ECL) use BJTs. Today, the dominant (but not exclusive)
technology is CMOS, which uses FETs. CMOS derives its name from the partic-
ular type of FET used—the MOSFET (metal oxide semiconductor FET). CMOS
therefore stands for complementary MOS, as two types of MOS device are used.
MOS is, in fact, a misnomer; a better term is IGFET (insulated gate FET).

The structure of an n-type MOS (NMOS) transistor is shown in Figure 1.4,
which is not drawn to scale. The substrate is the silicon wafer that has been doped
to make it p-type. The thickness of the substrate is therefore significantly greater
than the other transistor dimensions. Two heavily doped regions of n-type silicon
are created for each transistor. These form the source and drain. In fact, the source
and drain are interchangeable, but by convention the drain–source voltage is usually
positive. Metal connections are made to the source and drain. The polycrystalline
silicon (polysilicon) gate is separated from the rest of the device by a layer of silicon
dioxide insulator. Originally, the gate would have been metal; hence, the name MOS
was derived from the structure of the device (metal oxide semiconductor).

When the gate voltage is the same as the source voltage, the drain is insulated
from the source. As the gate voltage rises, the gate–oxide–semiconductor sandwich
acts as a capacitor, and negative charge builds up on the surface of the semicon-
ductor. At a critical threshold voltage the charge is sufficient to create a channel
of n-type silicon between the source and the drain. This acts as a conductor be-
tween the source and the drain. Therefore, the NMOS transistor can be used as a

Metal Gate Polysilicon Metal

Insulator
SiO2

Substrate p

n+ Diffusion Channel

Source Drain

Figure 1.4 NMOS transistor structure.

12 Introduction

D

S

B

G

(a)

D

S

B

G

(c)

D

S

G

(b)

D

S

G

(d)

Figure 1.5 MOS transistor symbols: (a) and (b) NMOS, (c) and (d) PMOS.

switch that is open when the gate voltage is low and closed when the gate voltage
is high.

A p-type MOS (PMOS) transistor is formed by creating heavily doped p-type
drain and source regions in an n-type substrate. A PMOS transistor conducts when
the gate voltage is low and does not conduct when the gate voltage is high.

Symbols for NMOS transistors are shown in Figure 1.5(a) and (b). The substrate
is also known as the bulk, hence the symbol B. In digital circuits, the substrate of
NMOS transistors is always connected to ground (logic 0) and hence can be omitted
from the symbol, as shown in Figure 1.5(b). Symbols for PMOS transistors are shown
in Figure 1.5(c) and (d). Again the bulk connection is not shown in Figure 1.5(d)
because in digital circuits the substrate of a PMOS transistor is always connected
to the positive supply voltage (logic 1).

A logical inverter (a NOT gate) can be made from an NMOS transistor and a
resistor, or from a PMOS transistor and a resistor, as shown in Figure 1.6(a) and (b),
respectively. VDD is the positive supply voltage (3.3 V to 5 V); GND is the ground
connection (0 V). The resistors have a reasonably high resistance, say, 10 k�. When
IN is at logic 1 (equal to the VDD voltage), the NMOS transistor in Figure 1.6(a)
acts as a closed switch. Because the resistance of the NMOS transistor, when it is
conducting, is much less than that of the resistor, OUT is connected to GND, giving
a logic 0 at that node. In the circuit of Figure 1.6(b), a logic 1 at IN causes the PMOS
transistor to act as an open switch. The resistance of the PMOS transistor is now

1.3 CMOS Technology 13

(a)

OUT

GND

IN

(b) VDD

OUT

IN

GND

VDD (c) VDD

OUTIN

GND

Figure 1.6 MOS inverters: (a) NMOS, (b) PMOS, (c) CMOS.

much greater than that of the resistor, so OUT is connected to GND via the resistor.
Again, a logic 0 is asserted at OUT.

A logic 0 at IN causes the opposite effect. The NMOS transistor becomes an
open switch, causing OUT to be connected to VDD by the resistor; the PMOS
transistor becomes a closed switch with a lower resistance than the resistor and
again OUT is connected to VDD.

Figure 1.6(c) shows a CMOS inverter. Here, both PMOS and NMOS transistors
are used. A logic 1 at IN will cause the NMOS transistor to act as a closed switch
and the PMOS transistor to act as an open switch, giving a 0 at OUT. A logic 0
will have the opposite effect: the NMOS transistor will be open and the PMOS
transistor will be closed. The name CMOS comes from complementary MOS—the
NMOS and PMOS transistors complement each other.

Current flows in a semiconductor as electrons move through the crystal matrix.
In p-type semiconductors, it is convenient to think of the charge being carried by the
absence of an electron, a “hole.” The mobility of holes is less than that of electrons
(i.e., holes move more slowly through the crystal matrix than do electrons). The
effect of this is that the gain of a PMOS transistor is less than that of a same-sized
NMOS transistor. Thus, to build a CMOS inverter with symmetrical characteristics,
in the sense that a 0 to 1 transition happens at the same rate as a 1 to 0 transition,
requires that the gain of the PMOS and NMOS transistors be made the same. This
is done by varying the widths of the transistors (assuming the lengths are the same)
such that the PMOS transistor is about 2.5 times as wide as the NMOS transistor. As
will be seen, this effect is compensated for in CMOS NAND gates, where similarly
sized NMOS and PMOS transistors can be used. CMOS NOR gates, however,

14 Introduction

(a) (b)VDD

A.B

A

GND

B

VDD

A+B

A

GND

B

Figure 1.7 (a) CMOS NAND; (b) CMOS NOR.

do require the PMOS transistors to be scaled. Hence, NAND gate logic is often
preferred for CMOS design.

Two-input CMOS NAND and NOR gates are shown in Figure 1.7(a) and (b),
respectively. The same reasoning as used in the description of the inverter may be
applied. A logic 1 causes an NMOS transistor to conduct and a PMOS transistor
to be open; a logic 0 causes the opposite effect. NAND and NOR gates with three
or more inputs can be constructed using similar structures. Note that in a NAND
gate all the PMOS transistors must have a logic 0 at their gates for the output to go
high. As the transistors are working in parallel, the effect of the lower mobility of
holes on the gain of the transistors is overcome.

Figure 1.8 shows a CMOS AND–OR–Invert structure. The function A.B + C.D
can be implemented using 8 transistors compared with the 14 needed for three
NAND/NOR gates and an inverter.

A somewhat different type of structure is shown in Figure 1.9(a). This circuit
is a three-state buffer. When the EN input is at logic 1, and the E N input is at
logic 0, the two inner transistors are conducting, and the gate inverts the IN input
as normal. When the EN input is at logic 0 and the E N input is at logic 1, neither
of the two inner transistors is conducting, and the output floats. The E N input is
derived from EN using a standard CMOS inverter. An alternative implementation
of a three-state buffer is shown in Figure 1.9(b). Here a transmission gate follows
the CMOS inverter. The NMOS and PMOS transistors of the transmission gate are

1.3 CMOS Technology 15

A.B+C.D

A

GND

B

VDD

A B

C

C

D

D

Figure 1.8 CMOS AND-OR-INVERT.

VDD

OUT

GND

IN
EN

EN

(a) VDD

OUTIN

GND
EN

EN

(b)

Figure 1.9 CMOS three-state buffer.

16 Introduction

VDD

A⊕B

B

GND

A

D Q

CLK

CLK

CLK

CLK

A

B

C

C

C

C Z

(a) (b)

(c)

Figure 1.10 CMOS transmission gate circuits. (a) Multiplexer; (b) XOR; (c) D latch.

controlled by complementary signals. When EN is at logic 1 and E N is at logic 0,
both transistors conduct; otherwise, both transistors are open circuit.

Figure 1.10(a) shows a two-input multiplexer constructed from transmission
gates, while Figure 1.10(b) and (c) show an exclusive OR gate and a D latch, re-
spectively, that both use CMOS transmission gates. All these circuits use fewer
transistors than the equivalent circuits constructed from standard logic gates. It
should be noted, however, that the simulation of transmission gate circuits can
be problematic. We do not give any examples in this book, other than of general
three-state buffers.

1.4 Programmable Logic
While CMOS is currently the dominant technology for integrated circuits, for
reasons of cost and performance, many designs can be implemented using
programmable logic. The major advantage of programmable logic is the speed of

1.4 Programmable Logic 17

implementation. A PLD can be configured on a desktop in seconds, or at most
minutes. The fabrication of an integrated circuit can take several weeks. The cost
per device of a circuit built in programmable logic may be greater than that of a
custom IC, and the performance, in terms of both speed and functionality, is likely
to be less impressive than that of CMOS. These apparent disadvantages are often
outweighed by the ability to rapidly produce working ICs. Thus, programmable
logic is suited to prototypes, but also increasingly to small production volumes.

One recent application of programmable devices is as reconfigurable logic. A
system may perform different functions at different points in time. Instead of having
all the functionality available all the time, one piece of hardware may be reconfigured
to implement the different functions. New functions, or perhaps better versions of
existing functions, could be downloaded from the Internet. Such applications are
likely to become more common in the future.

There are a number of different technologies used for programmable logic by
different manufacturers. The simplest devices, PLAs, consist of two programmable
planes, as shown in Figure 1.3. In reality, both planes implement a NOR func-
tion. The device is programmed by breaking connections. Most simple programm-
able devices use some form of floating gate technology. Each connection in the
programmable planes consists of a MOS transistor. This transistor has two gates—
one is connected to the input, while the second, between the first gate and the
channel, floats. When the appropriate negative voltage is applied to the device, the
floating gate can have a large charge induced on it. This charge will exist indefi-
nitely. If the charge exists on the floating gate, the device is disabled; if the charge
is not there, the device acts as a normal transistor. The mechanisms for putting
the charge on the device include avalanche or hot electron injection (EPROM) and
Fowler–Nordheim tunneling (EEPROM and Flash devices). These devices can be
reprogrammed electrically.

PALs have a programmable AND plane and a fixed OR plane, and usually
include registers, as shown in Figure 1.11. CPLDs effectively consist of a number of
PAL-like macrocells that can communicate through programmable interconnect,
as shown in Figure 1.12

More complex still are FPGAs. Xilinx FPGAs are implemented in static RAM
technology. Unlike other programmable logic, the configuration is therefore volatile
and must be restored each time power is applied to the circuit. Again, these FPGAs
consist of arrays of logic cells. One such cell is shown in Figure 1.13 Each of these
cells can be programmed to implement a range of combinational and sequential
functions. In addition to these logic cells, there exists programmable interconnect,
including three-state buffers.

18 Introduction

Figure 1.11 PAL structure (Copyright c© Lattice Semiconductor Corporation. Reprinted
with permission of the copyright owner. All other rights reserved.)

1.5 Electrical Properties 19

Macrocell

Macrocell

Macrocell

Macrocell

Macrocell

Macrocell

Macrocell

Macrocell

P
ro

gr
am

m
ab

le
In

te
rc

on
ne

ct

Common Clock and Reset

Figure 1.12 CPLD structure.

Look-
Up

Table

Flip-
Flop

Multiplexer

Clock

Output

Inputs

Figure 1.13 FPGA logic cell.

1.5 Electrical Properties
1.5.1 Noise Margins
Although it is common to speak of a logic 1 being, say, 2.5 V and a logic 0 being
0 V, in practice a range of voltages represents a logic state. A range of voltages may
be recognized as a logic 1, and similarly one voltage from a particular range may
be generated for a logic 1. Thus, we can describe the logic states in terms of the
voltages shown in Table 1.1.

The transfer characteristic for a CMOS inverter is illustrated in Figure 1.14.
The noise margin specifies how much noise, from electrical interference, can be
added to a signal before a logic value is misinterpreted. From Table 1.1 it can be
seen that the maximum voltage that a gate will generate to represent a logic 0 is
0.75 V. Any voltage up to 1.05 V is, however, recognized as a logic 0. Therefore,
there is a “spare” 0.3 V, and any noise added to a logic 0 within this band will be
accepted. Similarly, the difference between the minimum logic 1 voltage generated

20 Introduction

Table 1.1 Typical Voltage Levels for CMOS Circuits with a Supply Voltage of 2.5 V

Typical CMOS
Parameter Description Value

VIH max Maximum voltage recognized as a logic 1 2.5 V
VIH min Minimum voltage recognized as a logic 1 1.35 V
VIL max Maximum voltage recognized as a logic 0 1.05 V
VIL min Minimum voltage recognized as a logic 0 0.0 V
VOH max Maximum voltage generated as a logic 1 2.5 V
VOH min Minimum voltage generated as a logic 1 1.75 V
VOL max Maximum voltage generated as a logic 0 0.75 V
VOL min Minimum voltage generated as a logic 0 0.0 V

and the minimum recognized is 0.4 V. The noise margins are calculated as:

NML = VIL max − VOL max

NMH = VOH min − VIH min

In general, the bigger the noise margin, the better.

1.5.2 Fan-Out
The fan-out of a gate is the number of other gates that it can drive. Depending on
the technology, there are two ways to calculate the fan-out. If the input to a gate is
resistive, as is the case with TTL or anti-fuse technology, the fan-out is calculated
as the ratio of the current that a gate can output to the amount of current required

VO

VOHmin

VOLmax

VIVIHminVILmax

Figure 1.14 Transfer characteristic of a CMOS inverter.

1.5 Electrical Properties 21

Table 1.2 Input and Output Currents for 74ALS Series TTL
Gates

IIH max Maximum logic 1 input current 20 μA
IIL max Maximum logic 0 input current −100μA
IOH max Maximum logic 1 output current −400μA
IOL max Maximum logic 0 output current 8 mA

to switch the input of a gate. For example, 74ALS series gates have the input and
output currents specified in Table 1.2.

Two fan-out figures can be calculated:

Logic 1 fan-out =
IOH max

IIH max
=

400μA
20μA

= 20

Logic 0 fan-out =
IOL max

IIL max
=

8mA
100μA

= 80

Obviously, the smaller of the two figures must be used.
CMOS gates draw almost no DC input current because there is no DC path

between the gate of a transistor and the drain, source, or substrate of the transis-
tor. Therefore, it would appear that the fan-out of CMOS circuits is very large.
A different effect applies in this case. Because the gate and substrate of a CMOS
gate form a capacitor, it takes a finite time to charge that capacitor, and hence the
fan-out is determined by how fast the circuit is required to switch. In addition, the
interconnect between two gates has a capacitance. In high-performance circuits,
the effect of the interconnect can dominate that of the gates themselves. Obviously,
the interconnect characteristics cannot be estimated until the final layout of the
circuit has been completed.

Figure 1.15(a) shows one CMOS inverter driving another. Figure 1.15(b) shows
the equivalent circuit. If the first inverter switches from a logic 1 to a logic 0 at t = 0,
and if we assume that the resistance of the NMOS transistor is significantly less than
the resistance of the PMOS transistor, VO is given by:

VO = VDDe−t/RNCG.

From Table 1.1, the minimum value of VO that would be recognized as a logic 1
is 1.35 V, and the maximum value of VO that would be recognized as a logic 0 is
1.05 V. For example, if VDD is 2.5 V, RN is 100 �, and CG is 100 pF, we can see that

22 Introduction

VDD

RP

RN
CG

VO

VDD(a) (b)

Figure 1.15 (a) CMOS inverter driving CMOS inverter; (b) equivalent circuit.

the time taken for VO to drop from 1.35 V to 1.05 V is given by:

t = −100 × 100 × 10−12 × ln
1.05
2.5

+ 100 × 100 × 10−12 × ln
1.35
2.5

= 2.5 ns

If two inverters are driven, the capacitive load doubles, so the switching time
doubles. Therefore, although a CMOS gate can drive an almost unlimited number
of other gates at a fixed logic level, the fan-out is limited by the speed required of
the circuit.

Summary
Digital design is no longer a matter of taking small-scale ICs and connecting them
together. PLDs are an important alternative to full-custom ICs. A number of dif-
ferent technologies exist for PLDs. These different technologies impose different
constraints on the designer.

Further Reading
The best source of information about different families of programmable logic is the
manufacturers themselves. Entire data books are now available on the Web. These
generally include electrical information, design advice, and hints for programming
using SystemVerilog or Verilog. In general, it is easy to guess the Web addresses; for
example, Xilinx is at xilinx.com and Actel is at actel.com.

Exercises 23

Exercises
1.1 Find examples of the following components in a 74ALS/74AHC data book

(or on the Web):

• 4-bit universal shift register

• 4-bit binary counter

• 8-bit priority encoder

• 4-bit binary adder

• 4-bit ALU (Arithmetic and Logic Unit)

1.1 Find examples of PLDs, CPLDs, and FPGAs from manufacturers’ data books
or from the Web. Compare the following factors:

• Technologies

• Performance

• Cost

• Programmability (e.g., use of SystemVerilog)

• Testability

1.2 How is SystemVerilog used in the design process?

1.3 FPGAs are available in a number of sizes. Given that smaller FPGAs will be
cheaper, what criteria would you use to estimate the required size of an
FPGA, prior to detailed design?

1.4 A digital system may be implemented in a number of different technologies.
List the main types available and comment on the advantages and
disadvantages of each option. If you were asked to design a system with about
5,000 gates and which was expected to sell about 10,000 units, which
hardware option would you choose and why?

This page intentionally left blank

2Combinational Logic
Design

Digital design is based on the processing of binary variables. In this chapter,
we will review the principles of Boolean algebra and the minimization of Boolean
expressions. Hazards and basic numbering systems will also be discussed.

2.1 Boolean Algebra
2.1.1 Values
Digital design uses a two-value algebra. Variables can take one of two values that
can be represented by

ON and OFF,

TRUE and FALSE,

1 and 0.

2.1.2 Operators
The algebra of two values, known as Boolean algebra, after George Boole (1815–
1864), has five basic operators. In decreasing order of precedence (i.e., in the absence

25

26 Combinational Logic Design

of parentheses, operations at the top of the list should be evaluated first) these are:

1. NOT

2. AND

3. OR

4. IMPLIES

5. EQUIVALENCE

The last two operators are not widely used in digital design. These operators
can be used to form expressions. For example:

A = 1

B = C AND 0

F = (A + B · C)

Z = (Ā + B) · (A + B̄)

The symbol “+” means “OR,” “.” means “AND,” and the overbar, for example,
“Ā,” means “NOT A.”

2.1.3 Truth Tables
The meaning of an operator or expression can be described by listing all the possible
values of the variables in that expression, together with the value of the expression
in a truth table. The truth tables for the three basic operators are given in Tables 2.1,
2.2, and 2.3.

In digital design, three further operators are commonly used: NAND (Not
AND), NOR (Not OR), and XOR (eXclusive OR); see Tables 2.4, 2.5, and 2.6.

The XNOR (A ⊕ B) operator is also used occasionally. XNOR is the same as
EQUIVALENCE.

Table 2.1 NOT Operation

A NOT A (Ā)
0 1
1 0

2.1 Boolean Algebra 27

Table 2.2 AND Operation

A B A AND B (A · B)
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.3 OR Operation

A B A OR B (A + B)
0 0 0
0 1 1
1 0 1
1 1 1

Table 2.4 NAND Operation

A B A NAND B (A · B)
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.5 NOR Operation

A B A NOR B (A + B)
0 0 1
0 1 0
1 0 0
1 1 0

Table 2.6 XOR Operation

A B A XOR B (A ⊕ B)
0 0 0
0 1 1
1 0 1
1 1 0

28 Combinational Logic Design

2.1.4 Rules of Boolean Algebra
There are a number of basic rules of Boolean algebra that follow from the precedence
of the operators.

1. Commutativity

A + B = B + A

A · B = B · A

2. Associativity

A + (B + C) = (A + B) + C

A · (B · C) = (A · B) · C

3. Distributivity

A · (B + C) = A · B + A · C

In addition, some basic relationships can be observed from the previous truth
tables.

¯̄A = A

A · 1 = A A + 0 = A

A · 0 = 0 A + 1 = 1

A · A = A A + A = A

A · Ā = 0 A + Ā = 1

The right-hand column can be derived from the left-hand column by applying
the principle of duality. The principle of duality states that if each AND is changed to
an OR, each OR to an AND, each 1 to 0, and each 0 to 1, the value of the expression
remains the same.

2.1.5 De Morgan’s Law
There is a very important relationship that can be used to rewrite Boolean expres-
sions in terms of NAND or NOR operations: de Morgan’s Law. This is expressed as

(A · B) = Ā + B̄ or (A + B) = Ā · B̄

2.2 Logic Gates 29

2.1.6 Shannon’s Expansion Theorem
Shannon’s expansion theorem can be used to manipulate Boolean expressions.

F (A, B, C , D, . . .) = A · F (1, B, C , D, . . .) + Ā · F (0, B, C, D, . . .)

= (A + F (0, B, C , D, . . .)) · (Ā + F (1, B, C , D, . . .))

F (1, B, C , D, . . .) means that all instances of A in F are replaced by a logic 1.

2.2 Logic Gates
The basic symbols for one and two input logic gates are shown in Figure 2.1. Three
and more inputs are shown by adding extra inputs (but note that there is no such
thing as a three input XOR gate). The ANSI/IEEE symbols can be used instead

1.0

0.8
0.4

1.0

0.3

0.8
0.8

0.7

0.7

0.16

&

=1

&

≥1

&

AND

OR

NOT

XOR

NAND

NOR

MIL-STD-806B ANSI/IEEE

≥1

≥1

1

Figure 2.1 Logic symbols.

30 Combinational Logic Design

(a) (b)

(c)

Figure 2.2 Equivalent circuit representations.

of the traditional “spade”-shaped symbols, but are “not preferred” according to
IEEE Standard 91-1984. As will be seen in Chapter 3, IEEE notation is useful for
describing complex logic blocks, but simple sketches are often clearer if done with
the traditional symbols. A circle shows logic inversion. Note that there are two forms
of the NAND and NOR gates. From de Morgan’s law, it can be seen that the two
forms are equivalent in each case.

In drawing circuit diagrams, it is desirable, for clarity, to choose the form of
a logic gate that allows inverting circles to be joined. The circuits of Figure 2.2
are identical in function. If the circuit of Figure 2.2(a) is to be implemented using
NAND gates, the diagram of Figure 2.2(b) may be preferable to that of Figure 2.2(c)
because the function of the circuit is clearer.

2.3 Combinational Logic Design
The values of the output variables of combinational logic are dependent only on
the input values and are independent of previous input values or states. Sequential
logic, on the other hand, has outputs that depend on the previous states of the
system. The design of sequential systems is described in Chapter 6.

The major design objective is usually to minimize the cost of the hardware
needed to implement a logic function. That cost can usually be expressed in terms
of the number of gates, although for technologies such as programmable logic, there
are other limitations, such as the number of terms that may be implemented. Other
design objectives may include testability (discussed in detail in Chapter 12) and
reliability.

2.3 Combinational Logic Design 31

Table 2.7 Minterms and Maxterms

A B C Z
0 0 0 1 m0

0 0 1 1 m1

0 1 0 0 M2

0 1 1 0 M3

1 0 0 0 M4

1 0 1 1 m5

1 1 0 0 M6

1 1 1 1 m7

Before describing the logic design process, some terms have to be defined. In
these definitions, it is assumed that we are designing a piece of combinational logic
with a number of input variables and a single output.

A minterm is a Boolean AND function containing exactly one instance of each
input variable or its inverse. A maxterm is a Boolean OR function with exactly one
instance of each variable or its inverse. For a combinational logic circuit with n
input variables, there are 2n possible minterms and 2n possible maxterms. If the
logic function is true at row i of the standard truth table, that minterm exists and is
designated by mi . If the logic function is false at row i of the standard truth table,
that maxterm exists and is designated by Mi . For example, Table 2.7 defines a logic
function. The final column shows the minterms and maxterms for the function.

The logic function may be described by the logic OR of its minterms:

Z = m0 + m1 + m5 + m7

A function expressed as a logical OR of distinct minterms is in sum of products
form.

Z = Ā · B̄ · C̄ + Ā · B̄ · C + A · B̄ · C + A · B · C

Each variable is inverted if there is a corresponding 0 in the truth table and not
inverted if there is a 1.

Similarly, the logic function may be described by the logical AND of its max-
terms.

Z = M2 · M3 · M4 · M6

A function expressed as a logical AND of distinct maxterms is in product of
sums form.

Z = (A + B̄ + C) · (A + B̄ + C̄) · (Ā + B + C) · (Ā + B̄ + C)

32 Combinational Logic Design

Table 2.8 Truth Table
for Z = A + Ā · B̄

A B Z
0 0 1
0 1 0
1 0 1
1 1 1

Each variable is inverted if there is a corresponding 1 in the truth table and not
inverted if there is a 0.

An implicant is a term that covers at least one true value and no false values of
a function. For example, the function Z = A + Ā · B̄ is shown in Table 2.8.

The implicants of this function are A· B , A, B̄ , Ā· B̄ , A· B̄ . The non-implicants
are Ā, B , Ā · B .

A prime implicant is an implicant that covers one or more minterms of a function,
such that the minterms are not all covered by another single implicant. In the
example above, A, B̄ are prime implicants. The other implicants are all covered
by one of the prime implicants. An essential prime implicant is a prime implicant
that covers an implicant not covered by any other prime implicant. Thus, A, B̄ are
essential prime implicants.

2.3.1 Logic Minimization
The function of a combinational logic circuit can be described by one or more
Boolean expressions. These expressions can be derived from the specification of
the system. It is very likely, however, that these expressions are not initially stated
in their simplest form. Therefore, if these expressions were directly implemented as
logic gates, the amount of hardware required would not be minimal. Therefore, we
seek to simplify the Boolean expressions and hence minimize the number of gates
needed. Another way of stating this is to say that we are trying to find the set of
prime implicants of a function that is necessary to fully describe the function.

In principle, it is possible to simplify Boolean expressions by applying the
various rules of Boolean algebra described in Section 2.1. It does not take long,
however, to realize that this approach is slow and error prone. Other techniques
have to be employed. The technique described here, Karnaugh maps, is a graphical
method, although it is effectively limited to problems with six or fewer variables.
The Quine-McCluskey algorithm is a tabular method, which is not limited in the
number of variables and is well suited to tackling problems with more than one

2.3 Combinational Logic Design 33

output. Quine-McCluskey can be performed by hand, but it is generally less easy
than the Karnaugh map method. It is better implemented as a computer program.
Logic minimization belongs, however, to the NP-complete class of problems. This
means that as the number of variables increases, the time to find a solution increases
exponentially. Therefore, heuristic methods have been developed that find accept-
able, but possibly less than optimal, solutions. The Espresso program implements
heuristic methods that reduce to the Quine-McCluskey algorithm for small prob-
lems. Espresso has been used in a number of logic synthesis systems. Therefore, the
approach adopted here is to use Karnaugh maps for small problems with a single
output and up to six inputs. In general, it makes sense to use an EDA program to
solve larger problems.

The Karnaugh map (or K-map, for short) method generates a solution in sum-
of-products or product-of-sums form. Such a solution can be implemented directly
as two-level AND-OR or OR-AND logic (ignoring the cost of generating the in-
verse values of inputs). AND-OR logic is equivalent to NAND-NAND logic, and
OR-AND logic is equivalent to NOR-NOR logic. Sometimes, a cheaper solution
(in terms of the number of gates) can be found by factorizing the two-level, min-
imized expression to generate more levels of logic—two-level minimization must
be performed before any such factorization. Again, we shall assume that if such
factorization is to be performed, it will be done using an EDA program, such
as SIS.

2.3.2 Karnaugh Maps
A Karnaugh map is effectively another way to write a truth table. For example, the
Karnaugh map of a general two-input truth table is shown in Figure 2.3.

Similarly, three- and four-input Karnaugh maps are shown in Figures 2.4 and
2.5, respectively. Note that along the top edge of the three-variable Karnaugh map
and along both edges of the four-variable map, only one variable changes at a time—
the sequence is 00, 01, 11, 10, not the normal binary counting sequence. Hence,
for example, the columns in which A is true are adjacent. Therefore, the left and
right edges, and the top and bottom in the four-variable map, are also adjacent—B

0 1

0

1

Z0 Z2

Z1 Z3

A
B

Z:

A B Z

0 0 Z0
0 1 Z1
1 0 Z2
1 1 Z3

Figure 2.3 Two-input Karnaugh map.

34 Combinational Logic Design

00 01

0

1

Z0 Z2

Z1 Z3

AB
C

Z:

Z6 Z4

Z7

11 10

Z5

Figure 2.4 Three-input Karnaugh map.

Z0 Z4

Z1 Z5

Z12 Z8

Z13 Z9

Z3 Z7 Z15 Z11

Z2 Z6 Z14 Z10 Z8 Z0

Z10
Z2

Z6
Z14

Z15
Z7

00 01

00

01

AB
CD

Z:

11 10

11

10

Figure 2.5 Four-input Karnaugh map.

is false in the leftmost and rightmost columns. The three variable map is therefore
really a tube, and the four-variable map is a torus, as shown in Figure 2.5. Of course,
the maps are drawn as squares for convenience!

A five-variable Karnaugh map is drawn as 2 four-variable maps, one represent-
ing the truth table when the fifth variable, E, is false, and the other when E is true.
Squares at the same coordinates on both maps are considered to be adjacent. Simi-
larly, a six-variable Karnaugh map is drawn as 4 four-variable maps corresponding to
Ē · F̄ , Ē · F , E · F̄ , and E · F , respectively. For this to work, the Karnaugh maps have
to be arranged in the pattern as the entries in the two-variable map. Hence, squares
at the same location in adjacent maps can be considered adjacent. In practice, there-
fore, it is not feasible to consider Karnaugh maps with more than six variables.

Implicants can be read from Karnaugh maps by circling groups of
1, 2, 4, 8, . . . 2n true values. For example, the function Z = Ā · B̄ + Ā · B can
be expressed as shown in Table 2.9.

Table 2.9 Truth Table
for Z = Ā · B̄ + Ā · B

A B Z
0 0 1
0 1 1
1 0 0
1 1 0

2.3 Combinational Logic Design 35

0 1

0

1

1

1

0

0

A
B

Z:

Figure 2.6 Karnaugh map for a two-input function.

00 01

0

1

0

1

AB
C

Z:

1

0

1

0

0

1

11 10

Z = B.C + B.C

Figure 2.7 Groupings on a three-input Karnaugh map.

The corresponding Karnaugh map is shown in Figure 2.6. We can now circle
the two adjacent 1s as shown. This grouping represents the function Z = Ā because
it lies in the column A = 0, and because within the grouping, B takes both 0 and 1
values and hence we do not care about its value. Therefore, by grouping patterns of
1s, logic functions can be minimized. Examples of three- and four-variable Karnaugh
maps are shown in Figures 2.7 and 2.8. In both cases, by considering that the edges
of the Karnaugh maps are adjacent, groupings can be made that include 1s at two
or four edges.

00 01

00

01

1

AB
CD

Z:

00 1

0 11 0

0 11 0

1 00 1

11 10

11

10

Z = B.D + B.D

Figure 2.8 Groupings on a four-input Karnaugh map.

36 Combinational Logic Design

0 1

0

1

0 1

1 0

A
B

Z:

Figure 2.9 Exclusive OR grouping on a Karnaugh map.

The rules for reading prime implicants from a Karnaugh map are as follows.

• Circle the largest possible groups.

• Avoid circles inside circles (see the definition of a prime implicant).

• Circle 1s and read the sum of products for Z .

• Circle 0s and read the sum of products for Z̄ .

• Circle 0s and read the product of sums for Z .

• Circle 1s and read the product of sums for Z̄ .

Diagonal pairs, as shown in Figure 2.9, correspond to XOR functions.
The Karnaugh map of Figure 2.10 has three prime implicants circled. The

function can be read as Z = B · C̄ · D + Ā · C · D + Ā · B · D. The vertical grouping,
shown with a dashed line, covers 1s covered by the other groupings. This grouping
is therefore redundant and can be omitted. Hence, the function can be read as
Z = B · C̄ · D + Ā · C · D.

Assuming that all the prime implicants have been correctly identified, the min-
imal form of the function can be read by selecting all the essential prime implicants
(i.e., those circles that circle 1s—or 0s—not circled by any other group), together
with sufficient other prime implicants needed to cover all the 1s (or 0s). Redundant
groupings can be ignored, but under some circumstances it may be desirable to
include them.

00 01

00

01

0

0 1

AB
CD

Z:

00 0

0 00 0

1 0

1 0 0

11 10

11

10

1

Figure 2.10 Redundant grouping on a Karnaugh map.

2.4 Timing 37

0 1

0

1

1 0

- 1

A
B

Z:

A Z

0 1
0 -
1 0
1

B

0
1
0
1 1

Figure 2.11 “Don’t care” on a Karnaugh map.

Incompletely specified functions have “don’t cares” in the truth tables. These
don’t cares correspond to input combinations that will not (or should not) occur.
For example, consider the truth table of Figure 2.11.

The don’t care entries can be included or excluded from groups as convenient,
in order to get the largest possible groupings, and hence the smallest number of
implicants. In the example, we could treat the don’t care as a 0 and read Z =
Ā · B̄ + A · B , or treat the don’t care as a 1 and read Z = Ā + B .

2.4 Timing
The previous section dealt with minimizing Boolean expressions. The minimized
Boolean expressions can then be directly implemented as networks of gates or on
programmable logic. All gates have a finite delay between a change at an input and
a change at an output. If gates are used, therefore, different paths may exist in the
network, with different delays. This may cause problems.

To understand the difficulties, it is helpful to draw a timing diagram. This is
a diagram of the input and output waveforms as a function of time. For example,
Figure 2.12 shows the timing diagram for an inverter. Note the stylized (finite) rise

Input

Output

1

0

1

0

Time

Causality

Figure 2.12 Timing diagram for inverter.

38 Combinational Logic Design

A

C

B

C

D

E

Z

Figure 2.13 Circuit with static 1 hazard.

and fall times. An arrow shows causality, that is, the fact that the change in the
output results from a change in the input.

A more complex circuit would implement the function

Z = A · C + B · C̄

The value of C̄ is generated from C by an inverter. A possible implementation
of this function is therefore given in Figure 2.13. In practice, the delay through
each gate and through each type of gate would be slightly different. For simplicity,
however, let us assume that the delay through each gate is one unit of time. To start
with, let A = 1, B = 1. The output, Z , should be at 1 irrespective of the value of
C . Let us see, by way of the timing diagram in Figure 2.14, what happens when C
changes from 1 to 0. One unit of time after C changes C̄ and D change to 1. In turn,
these changes cause E and Z to change to 0 another unit of time later. Finally, the
change in E causes Z to change back to 1 a further unit of time later. This change

Z
1

0

A
1

0

B
1

0

C
1

0

C
1

0

D
1

0

E
1

0

Figure 2.14 Timing diagram for the circuit of Figure 2.13.

2.4 Timing 39

1

0

1

0

1

0

1

0

Static 1

Static 0

Dynamic 0

Dynamic 1

Figure 2.15 Types of hazard.

in Z from 1 to 0 and back to 1 is known as a hazard. A hazard occurs as a result of
delays in a circuit.

Figure 2.15 shows the different types of hazard that can occur. The hazard in
the circuit of Figure 2.13 is a static 1 hazard. Static 1 hazards can only occur in
AND-OR or NAND-NAND logic. Static 0 hazards can only occur in OR-AND or
NOR-NOR logic. Dynamic hazards do not occur in two-level circuits. They require
three or more unequal signal paths. Dynamic hazards are often caused by poor
factorization in multi-level minimization.

Static hazards, on the other hand, can be avoided by designing with redundant
logic. For example, the Karnaugh map of the circuit function of Figure 2.13 is
shown in Figure 2.16. The redundant prime implicant is shown as a dashed circle.
The redundant gate corresponding to this prime implicant can be introduced to
eliminate the hazard. The circuit function is therefore

Z = A · C + B · C̄ + A · B

The circuit is shown in Figure 2.17. Now, F is independent of C . If A = B = 1,
F = 0. F stays at 0 while C changes; therefore, Z stays at 1. (See Section 11.3.2 for
another good reason why circuits with redundancy should be avoided.)

00 01

0

1

0 1

0

AB
C

Z:

1 0

10 1

11 10

Figure 2.16 Redundant term on a Karnaugh map.

40 Combinational Logic Design

A

C

B

C

D

E Z

F

Figure 2.17 Hazard-free circuit.

2.5 Number Codes
Digital signals are either control signals of some kind or information. In general,
information takes the form of numbers or characters. These numbers and characters
have to be coded in a form suitable for storage and manipulation by digital hardware.
Thus, one integer or one character may be represented by a set of bits. From the
point of view of a computer or other digital system, no one system of coding is better
than another. There do, however, need to be standards, so that different systems can
communicate. The standards that have emerged are generally also designed such
that a human being can interpret the data if necessary.

2.5.1 Integers
The simplest form of coding is that of positive integers. For example, a set of three
bits would allow us to represent the decimal integers 0 to 7. In base 2 arithmetic,
0002 represents 010, 0112 represents 310, and 1112 represents 710. As with decimal
notation, the most significant bit is on the left.

For the benefit of human beings, strings of bits may be grouped into sets of
three or four and written using octal (base 8) or hexadecimal (base 16) notation. For
example, 668 is equal to 110 1102 or 5410. For hexadecimal notation, the letters A to
F represent the decimal numbers 10 to 15. For example, E D A16 is 1110 1101 10102

or 73328 or 380210.
The simple translation of a decimal number into bits is sufficient for zero and

positive integers. Negative integers require additional information. The simplest
approach is to set aside one bit as a sign bit. Therefore, 0 1102 might represent +610,
while 1 1102 would represent −610. While this makes translation between binary
and decimal numbers simple, the arithmetic operations of addition and subtraction

2.5 Number Codes 41

require that the sign bits be checked before an operation can be performed on two
numbers. It is common, therefore, to use a different notation for signed integers:
two’s complement. The principle of two’s complement notation is that the code
for −b, where b is a binary number represented using n bits, is the code given by
2n − b. For example, −610 is represented by 100002 − 01102, which is 10102. The
same result is obtained by inverting all the bits and adding 1: −610 is 10012 + 1 =
10102.

The advantage of two’s complement notation is that addition and subtraction
may be performed using exactly the same hardware as for unsigned arithmetic; no
sign checking is needed. The major disadvantage is that multiplication and division
become much more complicated. Booth’s algorithm, described in Section 5.7, is a
technique for multiplying two’s complement numbers.

2.5.2 Fixed Point Numbers
For many applications, non-integer data needs to be stored and manipulated. The
binary representation of a fixed-point number is exactly the same as for an integer
number, except that there is an implicit “decimal” point. For example, 6.25 is
equal to 22 + 21 + 2−2 or 110.012. Instead of representing the point, the number
110012 (2510) is stored with the implicit knowledge that it and the results of any
operations involving it have to be divided by 22 to obtain the true value. Notice
that all operations, including two’s complement representations, are the same as for
integer numbers.

2.5.3 Floating-Point Numbers
The number of bits that have been allocated to represent fractions limits the range of
fixed point numbers. Floating-point numbers allow a much wider range of accuracy.
In general, floating-point operations are only performed using specialized hardware
because they are very computationally expensive. A typical single precision floating-
point number has 32 bits, of which 1 is the sign bit (s), 8 are the exponent (e), biased
by an offset (2e − 1 = 127), and the remaining 23 are the mantissa (m), such that a
decimal number is represented as

(−1)s × 1 · m × 2e

IEEE standard 754-1985 defines formats for 32-, 64-, and 128-bit floating-point
numbers, with special patterns for ±∞ and the results of invalid operations, such
as

√−1.

42 Combinational Logic Design

2.5.4 Alphanumeric Characters
Characters are commonly represented by 7 or 8 bits. The ASCII code is widely used.
Seven bits allow the basic Latin alphabet in upper and lower cases, together with
various punctuation symbols and control codes to be represented. For example,
the letter A is represented by 1000001. For accented characters, 8-bit codes are
commonly used. Manipulation of text is normally performed using general purpose
computers rather than specialized digital hardware. Non-European languages may
use 16 or 32 bits to represent individual characters.

2.5.5 Gray Codes
In the normal binary counting sequence, the transition from 0111 (710) to 1000 (810)
causes 3 bits to change. In some circumstances, it may be undesirable that several
bits should change at once because the bit changes may not occur at exactly the
same time. The intermediate values might generate spurious warnings. A Gray code
is one in which only 1 bit changes at a time. For example a 3-bit Gray code would
count through the following sequence (other Gray codes can also be derived):

000
001
011
010
110
111
101
100

Note that the sequence of bits on a K-map is a Gray code. Another application
of Gray codes is as a position encoder on a rotating shaft, as shown in Figure 2.18.
Only 1-bit changes at each transition, so missed transitions are easily spotted.

000

001

011

010110

111

101

100

Figure 2.18 Gray code as shaft encoder.

Summary 43

Table 2.10 Two-Dimensional Parity

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Parity

Word 0 0 1 0 1 0 1 1 0 0
Word 1 0 1 0 0 1 0 0 0 0
Word 2 0 1 0 1 0 0 1 1 0
Word 3 0 1 0 0 1 0 0 1 1
Word 4 0 1 0 0 0 0 1 1 1
Word 5 0 1 0 0 1 0 0 0 0
Word 6 0 1 0 0 0 1 0 0 0
Word 7 0 1 0 0 1 1 0 0 1
Parity 0 0 0 0 0 1 1 1 1

2.5.6 Parity Bits
When data are transmitted either by wire or by using radio communications, there
is always the possibility that noise may cause a bit to be misinterpreted. At the very
least, it is desirable to know that an error has occurred, and it may be desirable to
transmit sufficient information to allow any error to be corrected.

The simplest form of error detection is to use a parity bit with each word of data.
For each 8 bits of data, a ninth bit is sent that is 0 if there is an even number of 1s
in the data word (even parity) or 1 otherwise. Alternatively, odd parity can be used;
in which case, the parity bit is inverted. This is sufficient if the chances of an error
occurring are low. We cannot tell which bit is in error, but knowing that an error has
occurred means that the data can be transmitted again. Unfortunately, if two errors
occur, the parity bit might appear to be correct. A single error can be corrected
by using a two-dimensional parity scheme, in which every ninth word is itself a set
of parity bits, as shown in Table 2.10. If a single error occurs, both the row parity
and column parity will be incorrect, allowing the erroneous bit to be identified and
corrected. Certain multiple errors are also detectable and correctable.

By using a greater number of parity bits, each derived from part of the word,
multiple errors can be detected and corrected. The simplest forms of such codes
were derived by Hamming in 1948. Better codes were derived by Reed and Solomon
in 1960.

Summary
Digital design is based on Boolean algebra. The rules of Boolean algebra allow
logical expressions to be simplified. The basic logical operators can be implemented
as digital building blocks—gates. Graphical methods, such as Karnaugh maps, are

44 Combinational Logic Design

suitable tools for finding the minimal forms of Boolean expressions with fewer than
six variables. Larger problems can be tackled with computer-based methods. Gates
have delays, which means that non-minimal forms of Boolean expressions may
be needed to prevent timing problems, known as hazards. Data can be represented
using sets of bits. Different types of data can be encoded to allow manipulation. Error
detecting codes are used when data is transmitted over radio or other networks.

Further Reading
The principles of Boolean algebra and Boolean minimization are covered in many
books on digital design. Recommended are those by Wakerly [25] and Hill and
Peterson [6]. De Micheli [10] describes the Espresso algorithm, which sits at the
heart of many logic optimization software packages. Espresso may be downloaded
from www-cad.eecs.berkeley.edu/.

Error detection and correction codes are widely used in communications sys-
tems. Descriptions of these codes can be found in, for example, Hamming [8].

Exercises
2.1 Derive Boolean expressions for the circuits of Figure 2.19; use truth tables to

discover if they are equivalent.

Figure 2.19 Circuits for Exercise 2.1.

www-cad.eecs.berkeley.edu/

Exercises 45

2.2 Minimize

(a) Z = m0 + m1 + m2 + m5 + m7 + m8 + m10 + m14 + m15

(b) Z = m3 + m4 + m5 + m7 + m9 + m13 + m14 + m15

2.3 Describe two ways of representing negative binary numbers. What are the
advantages and disadvantages of each method?

2.4 A floating-point decimal number may be represented as:

(−1)s × 1 · m × 2e

Explain what the binary numbers s , m, and e represent. How many bits would
typically be used for s , m, and e in a single precision floating-point number?

This page intentionally left blank

3Combinational Logic
Using SystemVerilog

Gate Models

Combinational logic is stateless: Changes in inputs are immediately reflected by
changes in outputs. In this chapter, we introduce the basic ideas of modeling in
SystemVerilog by looking at combinational logic described in terms of gates.

3.1 Modules and Files
The basic unit of a SystemVerilog design is the module. For example, a two-input
AND gate might be described by:

module And2 (output wire z, input wire x, y);

assign z = x & y;

endmodule

The words shown in bold are keywords. The module description starts with
the keyword module, followed by the name of the module and a list of inputs and
outputs in parentheses. The module finishes with the keyword endmodule. Note
that a semicolon (“;”) follows the module header, but that there is no semicolon
following the endmodule keyword.

The header contains the inputs and outputs of the module. Here, one output
of type wire is declared, z, followed by x and y, defined by the keywords input

47

48 Combinational Logic Using SystemVerilog Gate Models

Table 3.1 Arithmetic and Logical
Operators in Order of Decreasing
Precedence

Arithmetic Bitwise Logical

+ – (unary) ∼ !
∗ / %

+ –
<< >>

&
ˆ ˆ ∼

|
&&
||

and wire. Inputs and outputs can appear in any order; the convention with
SystemVerilog gates is that outputs are declared before inputs. Because x and y

have the same direction and the same type, they can be listed together after the
keywords.

In this example, the model has only one statement. The keyword assign is
used to indicate a so-called continuous assignment—this will be explained later.
The bitwise AND of x and y is assigned to z. Arithmetic and logical operators in
SystemVerilog are based on those in C. A full list is given in Table 3.1.

The entire module can be contained in single file. It is possible to have more
than one module in a file, but this is not advisable because any change to one module
requires compilation of the entire file.

It is recommended that you follow these guidelines when organizing your work.

• Put each module in a separate file.

• The file name and the module name should be the same; give the file name the
extension “.v” (for Verilog) or “.sv” (for SystemVerilog). (For the examples in
this book, the extension “.v” is used.)

• Do not use spaces in file names or folders/directories. (Some tools have
difficulties, even when this is allowed by the operating system.)

3.2 Identifiers, Spaces, and Comments
SystemVerilog is case sensitive (like C). Keywords must be lower case. Identifiers
(such as “And2”) may be mixed case. It is strongly recommended that usual software
engineering rules about identifiers should be applied.

3.2 Identifiers, Spaces, and Comments 49

• Meaningful, non-cryptic names should be used, based on English words.

• Use mixed-case with consistent use of case.

• Don’t use excessively long identifiers (15 characters or fewer).

• Don’t use identifiers that may be confused (e.g., two identifiers that differ by
an underscore).

• Identifiers may consist of letters, numbers, and underscores (“ ”), but the first
character must not be a number.

• System tasks and functions start with a dollar symbol (“$”).

• It is possible to include other symbols in identifiers by starting the identifier
with a backslash (“\”). This is intended for transferring data between tools, so
use with extreme caution!

White space (spaces, carriage returns) should be used to make models more
readable. There is no difference between one white space character and many.

Comments may be included in a SystemVerilog description by putting two
slashes on a line (“//”). All text between the slashes and the end of the line is ignored.
This is similar to the C++ style of comment. There is also a C-style block comment
(“/*. . .*/”) in SystemVerilog. It is strongly recommended that comments should be
included to aid in the understanding of SystemVerilog code. Each SystemVerilog
file should include a header, which typically contains

• The name(s) of the design units in the file

• File name

• A description of the code

• Limitations and known errors

• Any operating system and tool dependencies

• The author(s), including a full address

• A revision number

For example:

///
// Design unit : And2
// :
// File name : And2.v
// :
// Description : Model of basic 2 input AND
// : gate. Inputs of type wire.

50 Combinational Logic Using SystemVerilog Gate Models

// :
// Limitations : None
// :
// System : IEEE 1800-2005
// :
// Author : Mark Zwolinski
// : School of Electronics and Computer
// : Science
// : University of Southampton
// : Southampton SO17 1BJ, UK
// : mz@ecs.soton.ac.uk
//
// Revision : Version 1.0 04/02/09
///

3.3 Basic Gate Models
Built into SystemVerilog are a number of low-level gate primitives. These include:

and, or, nand, nor, xor, xnor, not, buf.

These are keywords, which will be shown in bold font. SystemVerilog is case
sensitive; keywords are always lower case. The meaning of the gates is probably
self-evident: xnor is an exclusive NOR gate (in other words, the output is true if the
inputs are equal); buf is a non-inverting buffer. There are several other primitives,
but these are sufficient for our purposes.

To distinguish one instance of a gate from another, a label follows the gate
primitive name (see the following for an example).

A gate is connected to one or more nets. These nets are listed in parentheses.
The convention is that the output comes first and is followed by the input(s).
A NAND gate with inputs a and b and output y might appear in a piece of
SystemVerilog as:

nand g1 (y, a, b);

where g1 is the label for that gate. Note the semicolon (;) at the end of the instance.
White space is not important, so this description could be split over two or more
lines, or formatted to line up with other statements.

It is possible to have more than one gate instance declared at the same time:

nand g1 (y, a, b), g2 (w, c, d);

This describes two gates (g1 and g2). This can be split over two or more lines.
While legal, this is not really recommended because it can make circuit descriptions
difficult to read.

3.4 A Simple Netlist 51

There are two further pieces of information that can be declared with a gate:
the signal strength and the delay. In CMOS circuits, signal strength is not usually
modeled, other than in the case of a high impedance state. We will discuss delay
modeling after we have looked at the structure of a netlist description.

3.4 A Simple Netlist
A netlist is a list of nets (!) and the gates (or other elements) that connect them. Let
us see how a simple combinational logic circuit can be described.

Figure 3.1 shows a simple combinational logic circuit, with one output (y), three
inputs (a, b, c), and three internal nodes (d, e, f). The gates and inverter are labeled
(g1, g2, g3, g4). This is a SystemVerilog description of the circuit:

module ex1 (output wire y, input wire a, b, c);
wire d, e, f;
not g1 (d, c);
and g2 (e, a, c);
and g3 (f, d, b);
or g4 (y, e, f);

endmodule

The description begins with the keyword module, followed by a name. The
inputs and outputs are then listed. We will follow the convention used in gate
primitives and list the output(s) before the input(s). It is also possible to have
bidirectional connections, declared with the inout keyword. All the inputs and
outputs are declared to be nets with the keyword wire. In fact, this keyword is not
needed, but it is strongly recommended, however, that you declare all nets using the
wire keyword (or the logic keyword, as we will see in later chapters).

The second line declares the internal nets of the circuit. Again, the declaration is
not strictly needed because once a net is used in a gate description, it is automatically
declared. Again, it is recommended that you declare all nets for clarity.

The next four lines are the gate declarations, which we have already discussed.
Finally, the end of the description is marked by the keyword endmodule.

a

c

b

d

e

f

y

g1

g2

g3

g4

Figure 3.1 Simple combinational circuit.

52 Combinational Logic Using SystemVerilog Gate Models

3.5 Logic Values
In the preceding description, we mentioned logic values and referred briefly to a
high impedance state. SystemVerilog allows wires to take four possible values: 0, 1, x
(unknown), and z (high impedance). In general, logic gates are designed to generate
0 or 1 at the outputs. x usually indicates some kind of anomalous situation—perhaps
an uninitialized flip-flop or a wire that is being driven to two different values by two
gates simultaneously.

The high-impedance state, z, is used to model the output of three-state buffers.
The purpose of three-state buffers is to allow the outputs of gates to be connected
together to form buses, for example. The x state is normally generated when different
outputs from two gates are connected together. We would expect, however, that a
1 and a z (or a 0 and a z) driving the same wire would resolve to a 1 (or a 0). Clearly,
therefore, not all logic values are equal.

The unknown and high-impedance states can be written as lower case (“x” and
“z”) or upper case (“X” and “Z”) characters. The question mark (“?”) can be used
as an alternative to the high-impedance state.

3.6 Continuous Assignments
The two-input AND gate at the beginning of the chapter was written using a con-
tinuous assignment. In general, continuous assignments are used to assign values
to nets. In later chapters, we will see that always_comb and always_ff proce-
dural blocks are more useful for describing synthesizable hardware. Continuous
assignments are, on the other hand, the most convenient way to describe three-state
buffers and to model delays in combinational logic. Three-state buffers will be dis-
cussed in more detail in the next chapter. This is an appropriate point, however, to
discuss SystemVerilog operators.

3.6.1 SystemVerilog Operators
Most of the arithmetic and logical operators in SystemVerilog are the same as those
in C. The arithmetic and logical operators are given in decreasing order of prece-
dence in Table 3.1. The standard arithmetic operators should not need further
explanation. % is a modulus operator; ∼ is a bitwise negation; ! is a logic negation;
<< and >> mean shift left and right, respectively; & means AND; | means OR;
and ˆ means XOR. The meaning of combined operators should be apparent. The
bitwise operators can be used as unary reduction operators, taking all the bits in a
vector as inputs and giving a single bit output.

3.7 Delays 53

For single bits, there is no difference between the bitwise and logical operators.
For integers or vectors of more than one bit, the bitwise operators are applied to
each bit, while the logical operators apply to the vector as a whole (a non-zero
value is true; zero is false). The bitwise operators can be used to construct Boolean
functions. For example, an AND-OR-Invert function could be written as:

assign y = ˜(a & b | c & d);

The conditional operator of C is also implemented. This is particularly useful
for three-state buffers:

assign y = enable ? a : ’z;

The notation ’z means one or more z values. The exact number depends on
the target on the left-hand side of the assignment. Here only one z value is assigned.
This is a useful shorthand, introduced in SystemVerilog. Alternatively, the exact
number of bits can be specified, for example 1’bz, where 1’b means “1 bit”.

SystemVerilog also has three types of equality operators: ==, ===, and ==?,
together with the inverses, !=, !==, and !=?. The differences between these operators
are in the ways in which they treat x and z values. The C-like == and != return an
unknown value (1’bx) if any bit in either operand is x or z. === and !== do an
exact comparison between bit patterns, matching x and z values. ==? and !=? treat
x and z values in the right-hand operand as don’t cares. In practice, == and != are
synthesizable and === and !== are not synthesizable (because it is not possible
to detect x and z values in real hardware). ==? and !=? are synthesizable if the
right-hand operand is a constant; for example,

assign even = (a ==? 4’b???0);

(As noted previously, “?” is an alternative to “z”.)

3.7 Delays
While it is possible to design circuits at the gate level, it does make the use of an
HDL like SystemVerilog a little pointless. Indeed, it could be argued that writing a
netlist by hand is a waste of time. If you are working at that level, you will probably
have had to sketch the circuit diagram. So why not use a schematic capture program
to draw the circuit, and then generate the netlist from the schematic automatically?

This does not mean you will never encounter a netlist. Another way of generating
a netlist is from a synthesis tool or by extracting the circuit after physical layout of
the circuit. In both of these cases, you will probably wish to verify your design by
simulation. You can simply verify the logical functionality of the circuit, but it is

54 Combinational Logic Using SystemVerilog Gate Models

a

b

y

0 10 20 30 40 50 60

Figure 3.2 NAND function with delay.

often more important to verify that the circuit will work correctly at the normal
operating speed. To verify the timing, the simulation model must include timing
information. The simplest way to include this information is to model the delay
through each gate.1 For example, a delay of 10 ps through a NAND gate would be
written as:

nand #10ps g1 (y, a, b);

The hash symbol (#) is used to denote a parameter. We will see further examples
of parameters in later chapters. Notice that the delay parameter is placed between
the type of gate (nand) and the name of the instance (g1).

In the previous example, there is one delay parameter. In the case of a NAND
gate, the output is at logic 1 if either or both inputs are at logic 0. Therefore, the
output will only go to logic 0 after the second of the two inputs has gone to 1. This
change will be delayed by 10 ps.

In Figure 3.2, signal b goes to 1 at time 20 ps; signal a goes back to 0 at time 40
ps. Therefore, the pulse on y is 20 ps wide, delayed by 10 ps.

Suppose that a changes back to 0 at time 35 ps. This would suggest that a pulse
5 ps wide would appear at y, again delayed by 10 ps. In fact, the delay has a second
meaning: Any pulse less than 10 ps wide is suppressed, Figure 3.3.

This is known as an inertial delay. Hence, a pulse is suppressed by inertial
cancellation.

1. In practice, a separate SDF (standard delay format) file, containing the timing information for each
gate, would be generated. See Section 10.5.1, but the principle still applies.

3.7 Delays 55

a

b

y

0 10 20 30 40 50 60

Figure 3.3 NAND function with inertial cancellation.

This delay model assumes that the delay through a gate is the same for a 0 to 1
transition on the output as for a 1 to 0 transition. This assumption is probably valid
for CMOS technologies, but may not be true in other cases. If the 0 to 1 and 1 to 0
delays differ, the two values may be specified. For example,

nand #(10ps, 12ps) g1 (y, a, b);

describes a NAND gate that has a 10 ps delay when the output changes to 1 (rise
delay) and a 12 ps delay when the output changes to 0 (fall delay). It is also possible
to specify a third delay for the case when the output changes to a high-impedance
state.

We can take delay modeling one step further to describe uncertainty. When
a circuit is extracted from a silicon layout, it is not possible to exactly predict the
delay through each gate or between each gate because of process variations. It is
reasonable, however, to expect that the minimum, typical, and maximum delays
through a gate can be the minimum, typical, and maximum delays respectively; for
example,

nand #(8ps:10ps:12ps, 10ps:12ps:14ps) g1 (y, a, b);

describes a NAND gate that has a minimum rise delay of 8 ps, a typical rise delay of
10 ps, and a maximum rise delay of 12 ps. Similarly, the fall delay has three values.
A simulation can therefore be performed using the minimum, typical, or maximum
delays for all gates. In principle, the functionality of the circuit can therefore be
verified under extremes of fabrication.

56 Combinational Logic Using SystemVerilog Gate Models

Similarly, a delay can be associated with a continuous assignment:

assign #10ps z = x & y;

This is an inertial delay that behaves in exactly the same way as for a gate
primitive. By the same analogy, rising and falling delays and minimum, typical, and
maximum delays can be included, as for a gate:

assign #(8ps:10ps:12ps, 10ps:12ps:14ps) z = x & y;

3.8 Parameters
The statement:

assign #5ps z = x & y;

defines the exact delay for an AND gate. Different technologies, and indeed different
instances, will have different delays. We could declare a number of alternative
modules for an AND gate, each with a different delay. It would be better to write
the statement as:

assign #delay z = x & y;

and to define delay as a parameter to the SystemVerilog model.

module And2 #(parameter delay) (output wire z,
input wire x, y);

assign #delay z = x & y;
endmodule

When the gate is used in a netlist, a value is passed to the model as a parameter:

And2 #(5ps) g2 (p, b, q);

3.9 Testbenches
If we wish to simulate our circuit to verify that it really does work as expected, we
need to apply some test stimuli. We could, of course, write out some test vectors
and apply them one at a time, or, more conveniently, write the test data in Sys-
temVerilogṪhis type of SystemVerilog model is often known as a testbench. Test-
benches have a distinctive style. A testbench for a two-input AND gate is shown.

3.9 Testbenches 57

module TestAnd2;

wire a,b,c;

And2 g1 (c, a, b);

initial
begin
a = ’0;
b = ’0;
#100ps a = ’1;
#50ps b = ’1;
end

endmodule

Because this is a testbench, that is, a description of the entire world that affects
the model we are testing, there are no inputs or outputs to the module. This is
characteristic of testbenches. Nets corresponding to the input and output ports of
the circuit are first declared. The description consists of an instance of the circuit
we are testing, together with a set of input stimuli.

In the instantiation of the And2 gate, the nets in the testbench are associated
with the nets in the gate model, according to the order in which they are written.
Thus, c is connected to net z of the gate, and so on.

An initial2 procedural block is declared, in which the initial values of a and
b are defined.3 After a delay of 100 ps, a is updated and 50 ps later b is updated.
Note the use of begin and end to bracket multiple statements.

This is a very simple example of a testbench. It provides sufficient inputs to run
a simulation, but the designer would need to look at the simulation results to check
that the circuit was functioning as intended. SystemVerilog has the richness of a
programming language. Therefore, a testbench could be written to check simulation
results against a file of expected responses or to compare two versions of the same
circuit.

2. Beware. An initial block is executed once. A net should only be assigned a value from one
block. Therefore, it is a mistake to use an initial block to initialize a net and to assign another
value elsewhere.
3. This works in SystemVerilogU̇sing an initial block to assign a value to a wirewill not work in earlier
versions of Verilog.

58 Combinational Logic Using SystemVerilog Gate Models

Summary
In this chapter, we discussed the modeling of logic circuits as netlists of primitive
components.

A circuit block begins with the keyword module and ends with the keyword
endmodule. Inputs and outputs are listed in parentheses after the module keyword
as inputs, outputs or inouts. Internal wires may optionally be declared. It is
good practice to do this as it increases the readability of a design. A number of gate
primitives exist in SystemVerilogĠenerally, the connections to these gates are in the
order: output(s), input(s), control. Primitives may have one or two (or in the case
of three-state primitives, three) delay parameters. The delays are listed following a
hash (#). Delays are inertial. Delays may be specified with minimum, typical, and
maximum values.

SystemVerilog signals can take four values: 1, 0, x, or z. z has a lower strength
than the other values.

Further Reading
The definition of SystemVerilog is contained in the standard IEEE 1800-2005 [2].
This can be bought from the IEEE. There are a number of Verilog books available.

Exercises
3.1 Write a description of a three-input NAND gate with a delay of 5 ps using a

continuous assignment.

3.2 Write a description of a three-input NAND gate with a parameterizable delay
using a continuous assignment.

3.3 A full adder has the truth table of Table 3.2 for its sum (S) and carry (Co)
outputs, in terms of its inputs, A, B and carry in (Ci).
Derive expressions for S and Co using only AND and OR operators. Hence,
write a SystemVerilog description of a full adder as a netlist of AND and OR
gates and inverters. Do not include any gate delays in your models.

3.4 Write a SystemVerilog testbench to test all combinations of inputs to the full
adder of Exercise 3.3. Verify the correctness of your full adder and of the
testbench using a SystemVerilog simulator.

Exercises 59

Table 3.2 Truth Table for
Exercise 3.3

A B Ci S Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

3.5 Modify the gate models of Exercise 3.3 such that each gate has a delay of 1 ns.
What is the maximum delay through your full adder? Verify this delay by
simulation.

This page intentionally left blank

4Combinational Building
Blocks

While it is possible to design all combinational (and indeed sequential) circuits
in terms of logic gates, in practice this would be extremely tedious. It is far more
efficient, in terms of both the designer’s time and the use of programmable logic
resources, to use higher level building blocks. If we were to build systems using TTL
or CMOS integrated circuits on a printed circuit board, we would look in a catalog
and choose devices to implement standard circuit functions. If we use SystemVerilog
and programmable logic, we are not constrained to using just those devices in
the catalog, but we still think in terms of the same kinds of circuit functions. In
this chapter, we look at a number of combinational circuit functions. As we do
so, various features of SystemVerilog will be introduced. In addition, the IEEE
dependency notation will also be introduced, allowing us to describe circuits using
both graphical and textual representations.

4.1 Multiplexers
4.1.1 2 to 1 Multiplexer
A multiplexer can be used to switch one of many inputs to a single output. Typically,
multiplexers are used to allow large, complex pieces of hardware to be reused. The
IEEE symbol for a 2 to 1 multiplexer is given in Figure 4.1. G is a select symbol.

61

62 Combinational Building Blocks

MUX

1
G1

1

Figure 4.1 2 to 1 multiplexer.

If G is true, the input labeled 1 is connected to the output; if G is false, the input
labeled 1̄ is chosen.

A SystemVerilog model of this multiplexer follows.

module mux2 (output logic y,
input logic a, b, s);

always_comb
if (s)

y = b;
else

y = a;

endmodule

always_comb is a SystemVerilog variant on the general purpose Verilogalways
construct. We will see other variants in later chapters. A procedural always block
allows various procedural programming constructs to be used. always_comb indi-
cates that the block models purely combinational logic at the register transfer level.
In a general purpose Verilog always block, every input used by that block must be
listed. For an always_comb block, the inputs are derived automatically. Before Sys-
temVerilog, two of the most common errors made in writing RTL Verilog were the
accidental creation of sequential logic and the accidental omission of input signals,
resulting in a mismatch between simulated and synthesized behavior. Therefore, it
is very strongly recommended that synthesizable combinational logic should always
be modeled using the always_comb construct.

The always_comb block here contains exactly one statement. If more than
one statement is needed, they should be grouped using begin and end. The if

statement here is self-explanatory: if the select input, s, is true, the logic value at
input b is assigned to output y; if false, the value at a is assigned. An if statement
must occur within a procedural block. Note that the assignment is indicated using
a single equals sign (=). This is known as a blocking assignment. The significance
of this will be explained later. It is sufficient to note here that combinational logic
should always be modeled using blocking assignments.

4.2 Decoders 63

MUX

1
0

0
1
2
3

G
0
3

Figure 4.2 4 to 1 multiplexer.

4.1.2 4 to 1 Multiplexer
The symbol for a 4 to 1 multiplexer is shown in Figure 4.2. As before, G is a select
symbol. 0

3 is not a fraction, but means 0-3. Therefore, the binary value on the top
two inputs is used to select one of the inputs 0-3.

The 2 to 1 multiplexer model can be extended to a 4 to 1 multiplexer by nesting
if statements.

module mux4 (output logic y,
input logic a, b, c, d, s0, s1);

always_comb
if (s0)

if (s1)
y = d;

else
y = c;

else
if (s1)

y = b;
else

y = a;

endmodule

4.2 Decoders
4.2.1 2 to 4 Decoder
A decoder converts data that has previously been encoded into some other form.
For example, n bits can represent 2n distinct values. The truth table for a 2 to 4
decoder is given in Table 4.1.

64 Combinational Building Blocks

Table 4.1 Truth Table for 2 to 4 Decoder

Inputs Outputs

A1 A0 Z3 Z2 Z1 Z0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

The IEEE symbol for a 2 to 4 decoder is shown in Figure 4.3. BIN/1-OF-4
indicates a binary decoder in which one of four outputs will be asserted. The num-
bers give the “weight” of each input or output.

We could choose to treat each of the inputs and outputs separately, but as they
are obviously related, it makes sense to treat the input and output as two vectors of
size 2 and 4, respectively. Vectors can be described using an array of variables; for
example:

logic [3:0] four_bit_array;

The 2 to 4 decoder can be modeled using a case statement:

module decoder (output logic [3:0] y,
input logic [1:0] a);

always_comb
case (a)

0 : y = 1;
1 : y = 2;
2 : y = 4;
3 : y = 8;
default : y = ’x;

endcase
endmodule

Depending on the numerical value of a, one of the branches in the case statement
is selected. There is, however, a sleight of hand here. SystemVerilog is not a strongly
typed language. The input, a, is declared to be a 2-bit variable of type logic, but
it is interpreted as an integer. This is acceptable in SystemVerilog, but would be

BIN/1-OF-4

1

2

1
2
3
4

Figure 4.3 2 to 4 decoder.

4.2 Decoders 65

completely illegal in many other HDLs and programming languages. This ability to
interpret bit patterns automatically is very powerful, but can be dangerous. The bit
pattern could have been interpreted as a signed number and there is no protection
against mixing such interpretations. So be careful! Similarly, the output is assigned
an integer value that is automatically reinterpreted as 4 bits.

The fifth alternative is a default. At first glance, this seems redundant as 2 bits
give four values, as specified. The control input, a, is of type logic, however. There-
fore, its bits can take x or z values. So, in effect, there are 16 possible values for a.
The default line assigns an x to the output if any of the input bits is not a true binary
value. This line will not be synthesized, but it is good practice to include it if you
want to check for unusual behavior in simulation.

4.2.2 Parameterizable Decoder
We have seen two ways to describe a 2 to 4 decoder. The same structures could
easily be adapted to model a 3 to 8 decoder or a 4 to 16 decoder. Although these
devices are clearly more complex than the 2 to 4 decoder, conceptually there is little
difference. It would be convenient to have a general N to 2N decoder that could
be described once, but used for any application. We cannot, of course, write a case
statement with an indeterminate number of branches. Another approach is needed.
One way to think about this is based on the following observation. The output can
be described as a single 1 shifted leftward by a number of places given by the input
number. The bit pattern of the input, a, is again interpreted as an integer number.

y = 1’b1 << a;

We specify a single bit with the notation 1’b, followed by the value of that bit.
Similarly, an array of size 2N can be declared as [(1<<N)-1:0]. If N takes the

default value of 3, the width of the output vector is given by 1 (note that this can be
an integer value, not a bit value) shifted left by three places to give the bit pattern
10002, which is 8 in decimal. To get 8 bits in total, we make the range 7 down to 0.

We saw in the previous chapter that parameters can be used to pass values, such
as delays, to SystemVerilog models. We can similarly use a parameter to define the
size of a structure.

module decoderN #(parameter N = 3)
(output logic [(1<<N)-1:0] y, input logic [N-1:0] a);

always_comb
y = 1’b1 << a;

endmodule

66 Combinational Building Blocks

There is, of course, another way to describe the decoder—as a log2(N) to N
decoder. In fact, we need the ceiling of the function; in other words, the size of
the result is rounded up to the next highest integer. This function, clog2, can be
implemented by shifting and adding. In SystemVerilog, a constant function can be
used to determine such values as array sizes. Constant functions are evaluated at
compile time and hence are a little more limited than regular functions. An example
of a constant function is given in the following. It is left as an exercise for the reader
to understand how the clog2 function works.

module decoderlogN #(parameter N = 8)
(output logic [N-1:0] y,
input logic [clog2(N)-1:0] a);

function int clog2(input int n);
begin
clog2 = 0;
n--;
while (n > 0)

begin
clog2++;
n >>= 1;
end

end
endfunction

always_comb
y = 1’b1 << a;

endmodule

4.2.3 Seven-Segment Decoder
Sometimes, several input patterns might give the same output. There are two alter-
natives to the case statement that allow don’t care values.

• casez allows z values in the case branches to be treated as don’t cares.
A ? can be used instead of z.

• casex allows z and x to be treated as don’t cares.

If more than one pattern should give the same output, the patterns can be listed.
For example, the following model describes a seven-segment decoder to display the
digits 0 to 9. If the bit patterns corresponding to decimal values 10 to 15 are fed

4.2 Decoders 67

0000 0001 0010 0011 0100 0101

0110 0111 1000 1001 1010
to

1111

Others

Bit Ordering

6

4

102

5 3

Figure 4.4 Seven-segment display.

into the decoder, an E (for “Error”) is displayed. If the inputs contain Xs or other
invalid values, the display is blanked. These patterns are shown in Figure 4.4. (But
be careful, there are many different ways to encode seven-segment displays. This
example will need to be changed if the segments are differently numbered or if the
logic is active low.)

module sevenseg(output logic [6:0] data,
input logic [3:0] address);

always_comb
casez (address)

4’b0000 : data = 7’b1110111;
4’b0001 : data = 7’b0010010;
4’b0010 : data = 7’b1011101;
4’b0011 : data = 7’b1011011;
4’b0100 : data = 7’b0111010;
4’b0101 : data = 7’b1101011;
4’b0110 : data = 7’b1101111;
4’b0111 : data = 7’b1010010;
4’b1000 : data = 7’b1111111;
4’b1001 : data = 7’b1111011;
4’b101?,
4’b11?? : data = 7’b1101101;
default : data = 7’b0000000;

endcase
endmodule

68 Combinational Building Blocks

4.3 Priority Encoder
4.3.1 Don’t Cares and Uniqueness
An encoder takes a number of inputs and encodes them in some way. The difference
between a decoder and an encoder is therefore somewhat arbitrary. In general, how-
ever, an encoder has fewer outputs than inputs and hence not all input combinations
can be uniquely encoded. A priority encoder attaches an order of importance to the
inputs. Thus, if two inputs are asserted, the most important input takes priority. The
symbol for a priority encoder is shown in Figure 4.5. There are three outputs. The
lower two are the encoded values of the four inputs. The upper output indicates
whether the output combination is valid. An OR function (≥ 1) is used to check that
at least one input is 1. Z is used to denote an internal signal. Thus, Z10 is connected
to 10. This avoids unsightly and confusing lines across the symbol.

An example of a priority encoder is given in Table 4.2. The Valid output is
used to signify whether at least one input has been asserted and hence whether the
outputs are valid.

We can code this directly in SystemVerilog, using the casez statement. We
need to be a little careful when using don’t cares. It would be very easy to write two
or more lines that overlapped. In other words, a pattern might match two or more
case branches. For example, the pattern 4’b0110 would match both 4’b0?10 and
4’b01?0. If both these alternatives were in a casez statement, the one occurring
first would be selected in simulation. If the design were synthesized, however, there
would be an ambiguity and the synthesis tool might attempt to impose its own
priority. To avoid any ambiguity, it is good practice to qualify a casez statement
with the unique modifier. If there is an overlap, an error would be flagged during
compilation.

We can reproduce the structure of the truth table by making one assignment to
y and valid simultaneously. Curly braces { } are used to concatenate variables: in
other words, to express two separate variables as one vector.

HPRI/BIN

1/Z11

0/Z10

1

2/Z12

3/Z13

2

≥110

11

12

13

Figure 4.5 4 to 2 priority encoder.

4.4 Adders 69

Table 4.2 Priority Encoder

Inputs Outputs

A3 A2 A1 A0 Y1 Y0 Valid
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 - 0 1 1
0 1 - - 1 0 1
1 - - - 1 1 1

module encoder (output logic [1:0] y, logic valid,
input logic [3:0]a);

always_comb
unique casez (a)

4b’1??? : {y,valid} = 3’b111;
4b’01?? : {y,valid} = 3’b101;
4b’001? : {y,valid} = 3’b011;
4b’0001 : {y,valid} = 3’b001;
default : {y,valid} = 3’b000;

endcase

endmodule

4.4 Adders
4.4.1 Functional Model
The IEEE symbol for a 4-bit adder is shown in Figure 4.6. The

∑
symbol denotes

an adder. P and Q are assumed to be the inputs to the adder. CI and CO are carry
in and carry out, respectively.

Σ

3

0

0

0

3

3

CI
CO

Σ

P

Q

Figure 4.6 Four-bit adder.

70 Combinational Building Blocks

The addition of two n-bit integers produces a result of length n + 1, where
the most significant bit is the carry out bit. Therefore, within the SystemVerilog
description we must separate the result into an n-bit sum and a carry out bit. The
following code performs these actions for both signed and unsigned addition. The
curly braces concatenate a single bit and an n-bit vector to give a vector of length
n + 1. The complete code follows.

module adder #(parameter N = 4)
(output logic [N-1:0] Sum, output logic Cout,
input logic [N-1:0] A, B, input logic Cin);

always_comb
{Cout, Sum} = A + B + Cin;

endmodule

4.4.2 Ripple Adder
A simple model of a single-bit full adder (see Exercise 3.3) might be:

module fulladder (output logic sum, cout,
input logic a, b, cin);

always_comb
begin
sum = a ˆ b ˆ cin;
cout = a & b | a & cin | b & cin;
end

endmodule

This model contains two assignments, sum and cout, written as Boolean expres-
sions. We can build a multi-bit adder using several instances of this full adder. If we
know how many bits will be in our adder, we simply instantiate the model several
times. If, however, we want to create a general N-bit adder, we need some type of
iterative construct. The generate construct with a for loop allows repetition in
a dataflow description. This example creates N-2 instances and, through the Ca
vector, wires them up. Notice that the loop variable, i, is declared as a genvar.

The first and last bits of the adder do not conform to the general pattern,
however. Bit 0 should have Cin as an input and bit N-1 should generate Cout. We
make special cases of the first and last elements, by instantiating them outside the
generate block.

4.4 Adders 71

module ripple #(parameter N = 4)
(output logic [N-1:0] Sum, output logic Cout,
input logic [N-1:0] A, B, input logic Cin);

logic [N-1:1] Ca;
genvar i;

fulladder f0 (Sum[0], Ca[1], A[0], B[0], Cin);

generate for (i = 1; i < N-1; i++)
begin : f_loop
fulladder fi (Sum[i], Ca[i+1], A[i], B[i], Ca[i]);
end

endgenerate

fulladder fN (Sum[N-1], Cout, A[N-1], B[N-1], Ca[N-1]);

endmodule

4.4.3 Tasks
The full adder could also be implemented as a task. A SystemVerilog task is a
sub-routine, like a function, but without a return value. Tasks can include more
diverse constructs than functions.

module ripple_task #(parameter N = 4)
(output logic [N-1:0] Sum, output logic Cout,
input logic [N-1:0] A, B, input logic Cin);

logic [N-1:1] Ca;
genvar i;

task automatic fulladder (output logic sum, cout,
input logic a, b, cin);

begin
sum = a ˆ b ˆ cin;
cout = a & b | a & cin | b & cin;
end

endtask

always_comb
fulladder (Sum[0], Ca[1], A[0], B[0], Cin);

72 Combinational Building Blocks

generate for (i = 1; i < N-1; i++)
begin : f_loop
always_comb

fulladder (Sum[i], Ca[i+1], A[i], B[i], Ca[i]);
end

endgenerate

always_comb
fulladder fN (Sum[N-1], Cout, A[N-1], B[N-1], Ca[N-1]);

endmodule

The task is declared as automatic to ensure that each call has its own copy of
variables. Otherwise, variables are shared between each call, which would lead to
conflicts between assignments.

4.5 Parity Checker
The principle of parity checking was explained in Chapter 2. The IEEE symbol for
a parity checker is shown in Figure 4.7. The symbol 2k indicates that the output is
asserted if 2k inputs are asserted for any integer, k. Thus, the output is asserted for
even parity. An odd parity checker has the output inverted.

This function can be implemented using a for loop. The syntax of this is the
same as in the C programming language.

module parity_loop #(parameter N = 4)
(output logic even, input logic [N-1:0] a);

always_comb
begin
even = ’1;
for (int i = 0; i < N; i++)
even = even ˆ a[i];

end

endmodule

2k

Figure 4.7 Even parity checker.

4.6 Three-State Buffers 73

It is possible to do this in a much more concise way. In addition to the usual
programming operators, SystemVerilog has reduction operators that can be applied
to all the bits of a vector. For example, the even parity bit can be generated by taking
the exclusive OR of all the bits of a vector and inverting.

module parity #(parameter N = 4)
(output logic even, input logic [N-1:0] a);

always_comb
even = ˜ˆa;

endmodule

4.6 Three-State Buffers
4.6.1 Multi-Valued Logic
In addition to the normal Boolean logic functions, it is possible to design digital
hardware using switches to disconnect a signal from a wire. For instance, we can
connect the outputs of several gates together, through switches, such that only one
output is connected to the common wire at a time. This same functionality could be
achieved using conventional logic, but would probably require a greater number of
transistors. The IEEE symbol for a three-state buffer is shown in Figure 4.8. The
symbol “1” shows the device is a buffer. “EN” is the symbol for an output enable
and the inverted equilateral triangle indicates a three-state output.

If we write a model using variables of type logic, we must ensure that two
models do not attempt to put a value onto the same variable. The purpose of using
three-state buffers is to allow two or more component outputs to be connected
together, provided that no more than one output generates a logic 1 or 0 and the
rest of the outputs are in the high impedance state. This cannot be done with logic
variables—a SystemVerilog simulator does not treat z as a special case. Resolution
of conflicting logic values is done using a wire. Assignment of high-impedance
can be done from within a procedural block, but it is easier to use a continuous
assignment that is outside any procedural block. Conversely, most of the examples

1
EN

Figure 4.8 Three-state buffer.

74 Combinational Building Blocks

in this chapter can be written using continuous assignments, but the procedural
style is easier to use. Therefore, it is recommended that all three-state elements are
modeled using continuous assignments and that the continuous assignment is only
used for this purpose.

A SystemVerilog model of a three-state buffer follows.

module threestate (output wire y,
input logic a, enable);

assign y = enable ? a : ’z;

endmodule

It is also possible to use three-state logic to build a multiplexer. A 4 to 1 mul-
tiplexer implemented in three-state logic follows. There are four assignments to y.
At any time, three are z and one is an input value. In order for the output value to
be correctly determined, and in order not to cause a compilation error, y must be
declared to be a wire.

module threemux4 (output wire y,
input logic a, b, c, d, s0, s1);

assign y = (˜s0 && ˜s1) ? a : ’z;
assign y = (s0 && ˜s1) ? b : ’z;
assign y = (˜s0 && s1) ? c : ’z;
assign y = (s0 && s1) ? d : ’z;

endmodule

4.7 Testbenches for Combinational Blocks
In the previous chapter, we introduced the idea of writing simulation testbenches in
SystemVerilog for simple combinational circuits. Testbenches are not synthesizable
and therefore the entire scope of SystemVerilog can be used to write them. Test-
benches are also notable for the fact that their module declarations do not include
any inputs or outputs—a testbench represents the rest of the world.

Two functions are generally performed in a testbench: generation of input stim-
uli and checking of results. The simple testbenches shown in the previous chapter
did not perform any checking. Moreover, input stimuli were generated using con-
current assignments. This style is fine for simple circuits, but is not appropriate for
circuits with multiple inputs. For example, let us write a testbench for the n-bit
adder of Section 4.4.1.

4.7 Testbenches for Combinational Blocks 75

module TestNBitAdder;

parameter N = 4;
logic Cin, Cout;
logic [N-1:0] Sum, A, B;

adder #(N) s0 (.*);

initial
begin
Cin = ’0;
A = 4’b0000;
B = 4’b0000;
#5ns A = 4’b1111;
#5ns Cin = ’1;
#5ns A = 4’b0111;
#5ns B = 4’b1111;
#5ns Cin = ’0;
end

endmodule

The instantiation of the adder has a parameter (N) and uses a wild card (.*)

to connect signals. This is allowable if the wire and variable names in the testbench
are exactly the same as those in the module being instantiated.

Note that the time is relative (we wait for 5 ns at a time), rather than absolute.
Remember, too, that initial indicates a procedure that is executed once, not an
initialization of variables.

As far as combinational circuits are concerned, this is about as complex as we
ever need to get. It is difficult, however, to work out what is going on. For example,
we try to add “0111” to “0000” with a carry in bit of 1. The simulation tells us that
the sum is “1000” with a carry out bit of 0. It is just about possible to work out that
this is correct, but it is not easy. Instead, we could use integers.

initial
begin
Cin = 0;
A = 0;
B = 0;
#5ns A = 15;
#5ns Cin = 1;
#5ns A = 7;
#5ns B = 15;
#5ns Cin = 0;
end

76 Combinational Building Blocks

Now we can see that 7+0+1 is equal to 8 (with no carry out). Better still, we
could let the testbench itself check the addition. In general, we do not necessarily
want to be told that the design is correct, but we do want to know if there is an
error. In Chapter 5, we will see how warning messages can be generated. Another
technique is to generate an error signal when unexpected behavior occurs. It is then
relatively easy to spot one signal changing state in a long simulation with a lot of
complex data. To the testbench above, we simply add an error signal:

logic error;

together with a process that is triggered whenever one of the outputs from the adder
changes:

always @(Cout, Sum)
error = ((A + B + Cin) != Sum);

The idea is to check the operation by performing it in a different way. In later
chapters, we will again see this principle. We will also use processes, triggered by
changing signals, to monitor outputs.

Summary
In this chapter, we introduced a number of typical combinational building blocks.
The IEEE standard symbols for these blocks were described. We briefly introduced
testbenches for combinational logic blocks.

Further Reading
A full description of the IEEE symbols is given in the IEEE standard and in a
number of digital design textbooks. Manufacturers’ data sheets may use the IEEE
symbols or a less standard form.

Exercises
4.1 SystemVerilog models can be written using continuous and procedural

assignments. Explain, with examples, the meaning of continuous and
procedural in this context.

4.2 Write a SystemVerilog model for the function Z = A · B + C · D.

Exercises 77

4.3 Write SystemVerilog models of a 3 to 8 decoder using (a) Boolean operators,
(b) a conditional operator, and (c) a shift operator. Write a testbench to
compare the three versions.

4.4 Write a SystemVerilog model of a 2n to n priority encoder.

4.5 Write a model of an n-input multiplexer. Write a suitable testbench.

4.6 A comparator is used to to determine whether two signals have equal values.
A one-bit comparator is described by

eqo = ˜(x ˆ y) & eqi;

where eqi is the result of the comparison of other bits and eqo is passed to the
next comparison operation. Write a model of an n-bit iterative comparator.

This page intentionally left blank

5SystemVerilog Models of
Sequential Logic Blocks

In the previous chapter we presented several examples of combinational building
blocks, at the same time introducing various aspects of SystemVerilog. In this chapter
we shall repeat the exercise for sequential blocks.

5.1 Latches
5.1.1 SR Latch
There is often confusion between the terms latch and flip-flop. Here, we will use latch
to mean a level-sensitive memory device and flip-flop to specify an edge-triggered
memory element. We discuss the design of latches and flip-flops in Chapter 13.
We simply note here that a latch is based on cross-coupled gates, as shown in
Figure 5.1. Table 5.1 gives the truth table of this latch.

When S and R are both at logic 1, the latch holds onto its previous value. When
both are at 0, both outputs are at 1. It is this latter behavior that makes the SR latch
unsuitable for designing larger circuits, as a latch or flip-flop would normally be
expected to have different values at its two outputs, and it is difficult to ensure that
both inputs will never be 0 at the same time.

79

80 SystemVerilog Models of Sequential Logic Blocks

Q

Q

R

S

Figure 5.1 SR latch.

The SR latch could be modeled in SystemVerilog in a number of ways. Two
examples follow.

module rslatch1 (output wire q, qbar,
input logic r, s);

nand n0(q, qbar, r);
nand n1(qbar, q, s);

endmodule

In the first example, the latch is modeled using two NAND gates. There is
nothing fundamentally wrong with this model, but it is dependent on the technology,
and it would be a little impractical for larger elements.

module rslatch2 (output logic q, qbar,
input logic r, s);

always @(r, s)
unique case ({r, s})

2’b00: {q, qbar} <= 2’b11;
2’b01: {q, qbar} <= 2’b10;
2’b10: {q, qbar} <= 2’b01;
default;

endcase

endmodule

In the second model, we explicitly model an element with storage. There-
fore, we cannot use an always_comb procedural block, which would imply purely

Table 5.1 Truth Table of SR Latch

S R Q Q̄

0 0 1 1
0 1 0 1
1 0 1 0
1 1 Q Q̄

5.1 Latches 81

combinatorial logic, without storage. We can use a general purpose always block,
as shown. We have to list the two inputs and, using a case statement, the truth table
of the latch can be reproduced. The curly braces { } concatenate two variables,
both in the case selector and in the case branches.

In the first three branches of the case statement, values are assigned to q and
qbar depending on the combination of inputs. Nothing is assigned in the fourth,
default branch, so the q and qbar values are retained. In other words, the values
are latched. If the module is synthesized, a latch will be inferred.

Notice that we have specified that the case statement is non-overlapping
(unique) and that there is a default (in which nothing happens).

These two examples show that omitting an assignment for one or more input
conditions infers a latch. If this is done by accident in an always_comb block,
a synthesis tool will generate a warning but might interpret the code as a latch.
Such warnings should always be examined carefully. Unintended latches will almost
certainly cause the circuit to work incorrectly.

5.1.2 D Latch
Because an SR latch can have both outputs at the same value, it is seldom if ever
used. More useful is the D latch, as shown in Figure 5.2. The input of a D latch is
transferred to the output if an enable signal is asserted. 1D indicates a dependency
of the D input on control signal 1 (C1). The Q̄ output is not shown.

A behavioral SystemVerilog model of a D latch is

module dlatch (output logic q, input logic d, en);

always_latch
if (en)

q <= d;

endmodule

The assignment is nonblocking, as shown by the symbol<=. Nonblocking assign-
ments are completed after blocking assignments (=). Sequential logic should always
be modeled with nonblocking assignments to ensure correct simulation behavior.

1D

C1

D

Enable

Q

Figure 5.2 Level-sensitive D latch.

82 SystemVerilog Models of Sequential Logic Blocks

5.2 Flip-Flops
5.2.1 Edge-Triggered D Flip-Flop
In the next chapter, the principle of synchronous sequential design is described.
The main advantage of this approach to sequential design is that all changes of state
occur at a clock edge. The clock edge is extremely short in comparison to the clock
period and to propagation delays through combinational logic. In effect, a clock
edge can be considered to be instantaneous.

The IEEE symbol for a positive edge-triggered D flip-flop is shown in Figure 5.3.
Again, the number 1 shows the dependency of D on C . The triangle at the clock
input denotes edge-sensitive behavior. An inversion circle, or its absence, shows
sensitivity to a negative or positive edge, respectively.

The simplest SystemVerilog model of a positive edge-triggered D flip-flop is
given in the following.

module dff (output logic q, input logic d, clk);

always_ff @(posedge clk)
q <= d;

endmodule

Again, a nonblocking assignment is used, as this is sequential logic. Similarly, a
negative edge-triggered flip-flop can be modeled by detecting a transition to logic 0.

5.2.2 Asynchronous Set and Reset
When power is first applied to a flip-flop, its initial state is unpredictable. In many
applications, this is unacceptable, so flip-flops are provided with further inputs to set
(or reset) their outputs to 1 or to 0, as shown in Figure 5.4. Notice that the absence
of any dependency on the clock implies asynchronous behavior for R and S .

These inputs should only be used to initialize a flip-flop. It is very bad practice
to use these inputs to set the state of a flip-flop during normal system operation.
The reason for this is that in synchronous systems, flip-flops only change state when

1D

C1

D

Clock

Q

Figure 5.3 Positive edge-triggered D flip-flop.

5.2 Flip-Flops 83

1D

C1

D

Clock

Q

R

SSet

Reset

Figure 5.4 Positive edge-triggered D flip-flop with asynchronous reset and set.

clocked. The set and reset inputs are asynchronous and hence cannot be guaranteed
to change an output at a particular time. This can lead to all sorts of timing problems.
In general, keep all designs strictly synchronous or follow a structured asynchronous
design methodology.

A SystemVerilog model of a flip-flop with an asynchronous reset must respond
to changes in the clock and in the reset input.

module dffr (output logic q,
input logic d, clk, n_reset);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

q <= ’0;
else

q <= d;

endmodule

An asynchronous set can be described in a similar way (see Exercises).
It is possible for a flip-flop to have both an asynchronous set and reset. For

example:

module dffrs (output logic q,
input logic d, clk, n_reset, n_set);

always_ff @(posedge clk, negedge n_reset,
negedge n_set)

if (˜n_set)
q <= ’1;

else if (˜n_reset)
q <= ’0;

else
q <= d;

endmodule

84 SystemVerilog Models of Sequential Logic Blocks

This may not correctly describe the behavior of a flip-flop with asynchronous
inputs because asserting both the asynchronous set and reset is usually considered
an illegal operation. In this model, Q is forced to 1 if n set is 0, regardless of the
n reset signal. Even if this model synthesizes correctly, we would still wish to check
that this condition did not occur during a simulation.

5.2.3 Synchronous Set and Reset and Clock Enable
Flip-flops may have synchronous set and reset functions as well as, or instead of,
asynchronous set or reset inputs. A synchronous set or reset only takes effect at a
clock edge. Thus, a SystemVerilog model of such a function must include a check
on the set or reset input after the clock edge has been checked. It is not necessary
to include synchronous set or reset inputs in the excitation list because the process
is only activated at a clock edge. This is shown in IEEE notation in Figure 5.5. R is
now shown to be dependent on C and is therefore synchronous.

module dffsr (output logic q,
input logic d, clk, n_reset);

always_ff @(posedge clk)
if (˜n_reset)

q <= ’0;
else

q <= d;

endmodule

Notice that the only difference between the synchronous and asynchronous
reset is whether the signal appears in the excitation list of the always_ff block.

Similarly, a flip-flop with a clock enable signal may be modeled with that signal
checked after the edge detection. In Figure 5.6, the dependency notation shows that
C is dependent on G and D is dependent on (the edge-triggered behavior of) C .

1D

C1

D

Clock

Q

1RReset

Figure 5.5 Positive edge-triggered D flip-flop with synchronous reset.

5.2 Flip-Flops 85

2D

1C2

D

Clock

Q

G1Enable

Figure 5.6 Positive edge-triggered D flip-flop with clock enable.

module dffe (output logic q,
input logic d, clk, enable);

always_ff @(posedge clk)
if (enable)

q <= d;

endmodule

A synthesis system is likely to interpret this as a flip-flop with a clock enable.
The following model is likely to be interpreted differently, although it appears to
have the same functionality.

module dffce (output logic q,
input logic d, clk, enable);

logic ce;

always_comb
ce = enable & clk;

always_ff @(posedge ce)
q <= d;

endmodule

Again, the D input is latched if enable is true and there is a clock edge. This
time, however, the clock signal passes through an AND gate and hence is delayed.
The D input is also latched if the clock is true and there is a rising edge on the
enable signal. This is another example of design that is not truly synchronous and
that is therefore liable to timing problems. This style of design should generally be
avoided, although for low-power applications, the ability to turn off the clock inputs
to flip-flops can be useful.

86 SystemVerilog Models of Sequential Logic Blocks

Table 5.2 Truth Table of D Flip-Flop

D Q+ Q̄+

0 0 1
1 1 0

5.3 JK and T Flip-Flops
A D flip-flop registers its input at a clock edge, making that value available during
the next clock cycle. JK and T flip-flops change their output states at the clock edge
in response to their inputs and to their present states. Truth tables for D, JK, and T
flip-flops are in Tables 5.2, 5.3, and 5.4, respectively.

Both the Q and Q̄ outputs are shown. Symbols for D, JK, and T flip-flops with
both outputs and with a reset are shown in Figure 5.7.

module jkffr (output logic q, qbar,
input logic j, k, clk, n_reset);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

{q, qbar} <= {1’b0, 1’b1};
else

case ({j, k})
2’b11 : {q, qbar} <= {qbar, q};
2’b10 : {q, qbar} <= {1’b1, 1’b0};

Table 5.3 Truth Table of JK Flip-Flop

J K Q+ Q̄+

0 0 Q Q̄
0 1 0 1
1 0 1 0
1 1 Q̄ Q

Table 5.4 Truth Table of T Flip-Flop

T Q+ Q̄+

0 Q Q̄
1 Q̄ Q

5.3 JK and T Flip-Flops 87

1D

C1

D

Clock

Q
RReset

Q

1J

C1

J

Clock

Q
RReset

Q

1T

C1

T

Clock

Q
RReset

Q

1KK

a) b)

c)

Figure 5.7 (a) D flip-flop; (b) JK flip-flop; (c) T flip-flop.

2’b01 : {q, qbar} <= {1’b0, 1’b1};
default:;

endcase

endmodule

A case statement determines the internal state of the JK flip-flop. The selector
of the case statement is formed by concatenating the J and K inputs. The default
clause covers the 00 case and other undefined values. Nothing is done in that clause,
so the internal state is retained.

module tffr (output logic q, qbar,
input logic t, clk, n_reset);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

{q, qbar} <= {1’b0, 1’b1};
else

if (t)
{q, qbar} <= {qbar, q};

endmodule

The internal state of the T flip-flop is retained between activations of the pro-
cedural block, if the T input is not set.

88 SystemVerilog Models of Sequential Logic Blocks

5.4 Registers and Shift Registers
5.4.1 Multiple Bit Register
A D flip-flop is a 1-bit register. Thus, if we want a register with more than 1 bit, we
simply need to define a set of D flip-flops using vectors:

module dffn #(parameter N = 8) (output logic [N-1:0]q,
input logic [N-1:0] d, input logic clk, n_reset);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

q <= ’0;
else

q <= d;

endmodule

The IEEE symbol for a 4-bit register is shown in Figure 5.8. Note that the
common signals are contained in a control block, drawn as a rectangle with the
lower corners cut off.

5.4.2 Shift Registers
An extension of the previous model of a register includes the ability to shift the
bits of the register to the left or to the right. For example, a sequence of bits can
be converted into a word by shifting the bits into a register, and moving the bits
along at each clock edge. After a sufficient number of clock edges, the bits of the
word are available as a single word. This is known as a serial-in, parallel-out (SIPO)
register.

R

C1

1D

Figure 5.8 Four-bit register.

5.4 Registers and Shift Registers 89

Table 5.5 Universal Shift Register

S1S0 Action

00 Hold
01 Shift right
10 Shift left
11 Parallel load

module sipo #(parameter N = 8) (output logic [N-1:0] q,
input logic a, clk);

always_ff @(posedge clk)
q <= {q[N-2:0], a};

endmodule

At each clock edge, the bits of the register are moved along by 1, and the input,
a, is shifted into the 0th bit. The assignment does this by assigning bits n − 2 to 0 to
bits n − 1 to 1, respectively, and concatenating a to the end of the assignment. The
old value for bit n − 1 is lost.

A more general shift register is the universal shift register, Table 5.5. This can
shift bits to the left or to the right, and can load an entire new word in parallel. To
do this, two control bits are needed. The IEEE symbol is shown in Figure 5.9.

SRG4
R

1

C4

1,4D

0}M
0
3

1→/2←

3,4D

3,4D

3,4D

3,4D
2,4D

reset

clk

s(0)

s(1)

rin
a(3)

a(2)

a(1)

a(0)
lin

q(3)

q(2)

q(1)

q(0)

Figure 5.9 Universal shift register.

90 SystemVerilog Models of Sequential Logic Blocks

There are four control modes shown by M 0
3 . The clock signal is split into two

for convenience. Control signal 4 is generated, and in modes 1 and 2, a shift left or
shift right operation, respectively, is performed. 1,4D means that a D-type operation
occurs in mode 1 when control signal 4 is asserted.

module usr #(parameter N = 8) (output logic [N-1:0]q,
input logic [N-1:0] a, input logic [1:0] s,
input logic lin, rin, clk, n_reset);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

q <= ’0;
else

case (s)
2’b11: q <= a;
2’b10: q <= {q[n-2:0], lin};
2’b01: q <= {rin, q[n-1:1]};
default:;

endcase

endmodule

The shift operations are done by taking the lowest (n−1) bits and concatenating
the leftmost input (shift left) or by taking the upper (n − 1) bits concatenated to the
rightmost input (shift right). It would be possible to use the shift operators, but in
practice they are not needed.

5.5 Counters
Counters are used for a number of functions in digital design, for example, counting
the number of occurrences of an event, storing the address of the current instruction
in a program, or generating test data. Although a counter typically starts at zero and
increments monotonically to some larger value, it is also possible to use different
sequences of values, which can result in simpler combinational logic.

5.5.1 Binary Counter
A binary counter is a counter in the intuitive sense. It consists of a register of
a number of D flip-flops, the content of which is the binary representation of a
decimal number. At each clock edge the contents of the counter are increased by
one, as shown in Figure 5.10. We can easily model this in SystemVerilog using the +
operator. The reset operation is shown in Figure 5.10 as setting the contents (CT)
to 0. The weight of each stage is shown in brackets.

5.5 Counters 91

CTRDIV16

CT = 0

C+

[1]

[2]

[4]

[8]

Figure 5.10 Binary counter.

module bincounter #(parameter N = 8)
(output logic [N-1:0] count,
input logic n_reset, clk);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

count <= 0;
else

count <= count + 1;

endmodule

Note that the + operator does not generate a carry out. Thus, when the counter
has reached its maximum integer value (all 1s), the next clock edge will cause the
counter to “wrap round,” and its next value will be zero (all 0s). We could modify
the counter to generate a carry out, but in general counters are usually designed
to detect the all-1s state and to output a signal when that state is reached. A carry
out signal would be generated one clock cycle later. It is trivial to modify this
counter to count down, or to count by a value other than one (possibly defined by
a parameter—see the exercises at the end of this chapter). It would be incorrect
to use the increment operator “++”, for example, by writing count++; instead
of the assignment. Although more concise, the increment is a blocking assignment
(equivalent to count = count + 1;). Using blocking assignments in sequential
logic can cause erroneous simulated behavior.

The advantage of describing a counter in SystemVerilog is that the underlying
combinational next state logic is hidden. For a counter with eight or more bits,
the combinational logic can be very complex, but a synthesis system will generate
that logic automatically. A simpler form of binary counter is the ripple counter.

92 SystemVerilog Models of Sequential Logic Blocks

An example of a ripple counter using T flip-flops is described in SystemVerilog in
the following, using the T flip-flop of Section 5.3.

module ripple_counter #(parameter N = 8)
(output logic [N-1:0] count,
input logic n_reset, clk);

logic [N:1] Ca;
genvar i;

tffr t0 (count[0], Ca[1], ’1, clk, n_reset);

generate for (i = 1; i < N; i++)
begin : t_loop
tffr ti (count[i], Ca[i+1], ’1, Ca[i], n_reset);
end

endgenerate

endmodule

Note that the T input is held at a constant value in the description. When
simulated using the T flip-flop model, this circuit behaves identically to the RTL
model.

The ripple counter is, however, asynchronous. The second flip-flop is clocked
from the Q output of the first flip-flop, as shown in Figure 5.11. A change in this
output is delayed relative to the clock. Hence, the second flip-flop is clocked by
a signal behind the true clock. With further counter stages, the delay is increased.
Further, incorrect intermediate values are generated. Provided the clock speed is
sufficiently slow, a ripple counter can be used instead of a synchronous counter, but
in many applications a synchronous counter is preferred.

1T

C1

R

1T

C1

R

1T

C1

R

1 1 1

Reset

Clock

count(0) count(1) count(2)

Figure 5.11 Ripple counter.

5.5 Counters 93

5.5.2 Johnson Counter
A Johnson counter (also known as a Möbius counter, after a Möbius strip, which is
a strip of paper formed into a circle with a single twist, resulting in a single surface)
is built from a shift register with the least significant bit inverted and fed back to
the most significant bit, as shown in Figure 5.12.

An n-bit binary counter has 2n states. An n-bit Johnson counter has 2n states.
The advantage of a Johnson counter is that it is simple to build (like a ripple counter),
but is synchronous. The disadvantage is the large number of unused states that form
an autonomous counter in their own right. In other words, we have the intended
counter and a parasitic state machine coexisting in the same hardware. Normally,
we should be unaware of the parasitic state machine, but if the system somehow
entered one of the unused states, the subsequent behavior might be unexpected. A
SystemVerilog description of a Johnson counter follows.

module johnson #(parameter N = 8)
(output logic [N-1:0] q,
input logic clk, n_reset);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

q <= ’0;
else

q <= {˜q[0], q[N-1:1]};

endmodule

SRG4
R

1D

C1/→

reset

clk

Figure 5.12 Johnson counter.

94 SystemVerilog Models of Sequential Logic Blocks

Table 5.6 Johnson Counter

Normal Counting Sequence Parasitic Counting Sequence

0000 0010
1000 1001
1100 0100
1110 1010
1111 1101
0111 0110
0011 1011
0001 0101

The counting sequence of a 4-bit counter, together with the sequence belonging
to the parasitic state machine, is shown in Table 5.6. Whatever the size of n, the
unused states form a single parasitic counter with 2n − 2n states.

Both sequences repeat but do not intersect at any point. The parasitic set of states
of a Johnson counter should never occur, but if one of the states did occur somehow,
perhaps because of a power supply glitch or because of some asynchronous input,
the system can never return to its normal sequence. One solution to this is to make
the counter self-correcting. It would be possible to detect every one of the parasitic
states and to force a synchronous reset, but for an n-bit counter that is difficult.
An easier solution is to note that the only legal state with a 0 in both the most
significant and least significant bits is the all zeros state. On the other hand, three
of the parasitic states have zeros in those positions. Provided that we are happy to
accept that if the system does enter an illegal state it does not have to correct itself
immediately, but can re-enter the normal counting sequence after a few clock cycles,
we can simply detect any states that have a 0 at the most and least significant bits
and force the next state to be 1000 or its n-bit equivalent.

module scjohnson #(parameter N = 8)
(output logic [N-1:0] q,
input logic clk, n_reset);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

q <= ’0;
else

if (˜q[N-1] & ˜q[0])
q <= {1’b1, {(N-1){1’b0}}};

else
q <= {˜q[0], q[N-1:1]};

endmodule

5.5 Counters 95

5.5.3 Linear Feedback Shift Register
Another counter that is simple in terms of next state logic is the linear feedback
shift register (LFSR). This has 2n − 1 states in its normal counting sequence. The
sequence of states appears to be random, hence the other name for the register:
pseudo-random sequence generator (PRSG). The next state logic is formed by
exclusive OR gates as shown in Figure 5.13.

There are a large number of possible feedback connections for each value of
n that give the maximal length (2n − 1) sequence, but it can be shown that no
more than four feedback connections (and hence three exclusive OR gates) are
ever needed. The single state missing from the sequence is the all-0s state. Hence,
the asynchronous initialization should be a “set.” As with the Johnson counter, the
LFSR could be made self-correcting. A SystemVerilog model of an LFSR valid for
certain values of n is shown in the following.

The main advantage of using an LFSR as a counter is that nearly the full range
of possible states (2n − 1) can be generated using simple next state logic. Moreover,
the pseudo-random sequence can be exploited for applications such as coding.

In the SystemVerilog model, the feedback connections for LFSRs with 1 to 36
stages are defined in an initial block. Note that the model is only defined for the
range 1 to 36 (with a default value of 8). Any attempt to use this model for a larger
LFSR would result in an invalid model. The model defines up to three feedback
connections—it is assumed that bit 0 is always used. The positions corresponding
to the feedback connections are set to 1, using a shift operator and OR-ing theses
values with the initial, all 0s value, using the assign and OR operator, |=. The
initial block is evaluated once, at elaboration time, and the resulting value is
used to configure the model.

SRG4
S

1D

C1/→

set

clk

Figure 5.13 LFSR.

96 SystemVerilog Models of Sequential Logic Blocks

To construct the feedback connection for a particular size of LFSR, the stages
of the LFSR referenced in the taps vector are XORed together using a for loop.

module lfsr #(parameter N = 4)
(output logic [N-1:0] q,
input logic clock, n_set);

logic feedback;
int i;
logic [N-1:0] taps;

initial
begin

taps = ’0;
case (N)
2: taps |= (1’b1 << 1);
3: taps |= (1’b1 << 1);
4: taps |= (1’b1 << 1);
5: taps |= (1’b1 << 2);
6: taps |= (1’b1 << 1);
7: taps |= (1’b1 << 1);
8: taps |= ((1’b1 << 6) | (1’b1 << 5)

| (1’b1 << 1));
9: taps |= (1’b1 << 4);
10: taps |= (1’b1 << 3);
11: taps |= (1’b1 << 2);
12: taps |= ((1’b1 << 7) | (1’b1 << 4)

| (1’b1 << 3));
13: taps |= ((1’b1 << 4) | (1’b1 << 3)

| (1’b1 << 1));
14: taps |= ((1’b1 << 12) | (1’b1 << 11)

| (1’b1 << 1));
15: taps |= (1’b1 << 1);
16: taps |= ((1’b1 << 5) | (1’b1 << 3)

| (1’b1 << 2));
17: taps |= ((1’b1 << 3));
18: taps |= ((1’b1 << 7));
19: taps |= ((1’b1 << 6) | (1’b1 << 5)

| (1’b1 << 1));
20: taps |= (1’b1 << 3);
21: taps |= (1’b1 << 2);
22: taps |= (1’b1 << 1);
23: taps |= (1’b1 << 5);
24: taps |= ((1’b1 << 4) | (1’b1 << 3)

| (1’b1 << 1));
25: taps |= (1’b1 << 3);

5.6 Memory 97

26: taps |= ((1’b1 << 8) | (1’b1 << 7)
| (1’b1 << 1));

27: taps |= ((1’b1 << 8) | (1’b1 << 7)
| (1’b1 << 1));

28: taps |= (1’b1 << 3);
29: taps |= (1’b1 << 2);
30: taps |= ((1’b1 << 16) | (1’b1 << 15)

| (1’b1 << 1));
31: taps |= (1’b1 << 3);
32: taps |= ((1’b1 << 28) | (1’b1 << 27)

| (1’b1 << 1));
33: taps |= (1’b1 << 13);
34: taps |= ((1’b1 << 15) | (1’b1 << 14)

| (1’b1 << 1));
35: taps |= (1’b1 << 2);
36: taps |= (1’b1 << 11);
endcase

end

always_ff @(posedge clock, negedge n_set)
if (˜n_set)

q <= ’1;
else

q <= {feedback, q[N-1:1]};

always_comb
begin
feedback = q[0];
for (i = 1; i <= N - 1; i++)

if (taps[i])
feedback ˆ= q[i];

end

endmodule

5.6 Memory
Computer memory is often classified as ROM (read-only memory) and RAM (ran-
dom access memory). These are to some extent misnomers—ROM is random access
and RAM is better thought of as read and write memory. RAM can further be divided
into SRAM (static RAM) and DRAM (dynamic RAM). SRAM retains its contents
while power is applied to the system. DRAM uses capacitors to store bits, which
means that the capacitance charge can leak away with time. Hence, DRAM needs
refreshing intermittently.

98 SystemVerilog Models of Sequential Logic Blocks

5.6.1 ROM
The contents of a ROM chip are defined once. Hence, we can use a constant array to
model a ROM device in SystemVerilog. The seven-segment decoder from Chapter 4
described as a ROM is shown in the following.

module sevensegrom(output logic [6:0] data,
input logic [3:0] address);

logic [6:0] rom [0:15] = {7’b1110111, //0
7’b0010010, //1
7’b1011101, //2
7’b1011011, //3
7’b0111010, //4
7’b1101011, //5
7’b1101111, //6
7’b1010010, //7
7’b1111111, //8
7’b1111011, //9
7’b1101101, //E 10
7’b1101101, //E 11
7’b1101101, //E 12
7’b1101101, //E 13
7’b1101101, //E 14
7’b1101101}; //E 15

always_comb
data = rom[address];

endmodule

The variable rom is declared as a vector of 16 values that is, in turn, com-
prised of 7-bit vectors. Because no values can be written into the ROM, we can
think of the device as combinational logic. In general, combinational logic func-
tions can be implemented directly in ROM. Programmable forms of ROM are
available (EPROM—electrically programmable ROM), but such devices require
the application of a large negative voltage (–12 V) to a particular pin of the device.
Such functionality is not modeled, as it does not form part of the normal operating
conditions of the device.

5.6.2 SRAM
SRAM may be modeled in much the same way as ROM. Because data may be stored
in the RAM as well as read from it, the data signal is declared to be a port of type
inout, and because it can be put into a high-impedance state, it is declared as a

5.6 Memory 99

wire. In addition, three control signals are provided. The first, CS (chip select)
is a general control signal to enable a particular RAM chip. The address range,
in this example, is 0 to 15. If we were to use, say, four identical chips to provide
RAM with an address range of 0 to 63 (6 bits), the upper two address bits would
be decoded such that at any one time exactly one of the RAM chips is enabled
by its CS signal. Hence, if the CS signal is not enabled, the data output of the
RAM chip should be in the high-impedance state. The other two signals are OE
(output enable) and WE (write enable). Only one of these two signals should be
asserted at one time. Data is either read from the RAM chip when the OE signal
is asserted, or written to the chip if the WE signal is asserted. If neither signal is
asserted, the output remains in the high-impedance state. All the control signals are
active low.

Like in the ROM, the memory array is modeled as a vector of vectors.

module RAM16x8(inout wire [7:0] Data,
input logic [3:0]Address,
input logic n_CS, n_WE, n_OE);

logic [7:0] mem [0:15];

assign Data = (˜n_CS & ˜n_OE) ? mem[Address] : ’z;

always_latch
if (˜n_CS & ˜n_WE & n_OE)

mem[Address] <= Data;

endmodule

5.6.3 Synchronous RAM
The SRAM model is asynchronous and intended for modeling separate memory
chips. Sometimes we wish to allocate part of an FPGA as RAM. In order for this to
be synthesized correctly and for ease of use, it is best to make this RAM synchronous.
Depending on the technology, there may be a variety of possible RAM structures,
for example, synchronous read, dual-port. Here, we will simply show how a basic
synchronous RAM is modeled. This parameterizable example can be synthesized
in most programmable technologies.

module SyncRAM #(parameter M = 4, N = 8)
(output logic [N-1:0] Qout,
input logic [M-1:0] Address,

100 SystemVerilog Models of Sequential Logic Blocks

input logic [N-1:0]Data, input logic WE, Clk);

logic [N-1:0] mem [0:(1 << M)-1];

always_comb
Qout = mem[Address];

always_ff @(posedge Clk)
if (˜WE)

mem[Address] <= Data;

endmodule

The structure of the write part of this code is almost identical to that of a flip-flop
with an enable—in this case, the enable signal is the WE input. As with the SRAM
example, the Address input is interpreted as an unsigned integer to reference an
array. This example could be extended to include an output enable and chip select,
as above.

5.7 Sequential Multiplier
Let us consider a multiplier for two’s complement binary numbers. Multiplication,
whether decimal or binary, can be broken down into a sequence of additions. A
SystemVerilog statement such as

q = a * b;

where a and b are n-bit representations of (positive) integers, would be interpreted
by a SystemVerilog synthesis tool as a combinational multiplication requiring n2 full
adders. If a and b are two’s complement numbers, there also needs to be a sign
adjustment. A combinational multiplier would take up a significant percentage of
an FPGA for n = 16.

The classic trade-off in digital design is between area and speed. In this case,
we can significantly reduce the area required for a multiplier if the multiplication
is performed over several clock cycles. Between additions, one of the operands of
a multiplication operation has to be shifted. Therefore, a multiplier can be imple-
mented as a single n-bit adder and a shift register.

Two’s complement numbers present a particular difficulty. It would be possible,
but undesirable, to recode the operands as unsigned numbers with a sign bit. Booth’s
algorithm tackles the problem by treating an operand as a set of sequences of all 1s
and all 0s. For example, –30 is represented as 100010. This is equal to −25 +22 −21.

5.7 Sequential Multiplier 101

In other words, as each bit is examined in turn, from left to right, only a change
from a 1 to a 0 or a 0 to a 1 is significant. Hence, in multiplying b by a, each pair of
bits of a is examined, so that if ai = 0 and ai−1 = 1, b shifted by i places is added
to the partial product. If ai = 1 and ai−1 = 0, b shifted by i places is subtracted
from the partial product. Otherwise, no operation is performed. The SystemVerilog
model shown in the following implements this algorithm, but note that instead of
shifting the operand to the left, the partial product is shifted to the right at each
clock edge. A ready flag is asserted when the multiplication is complete.

module booth #(parameter AL = 8, BL = 8, QL = AL+BL)
(output logic [QL-1:0] qout, output logic ready,
input logic [AL-1:0]ain, input logic [BL-1:0] bin,
input logic clk, load, n_reset);

logic [clog2(AL):0] count;
logic [BL-1:0] alu_out;
logic a_1;

function int clog2(input int n);
begin
clog2 = 0;
n--;
while (n > 0)

begin
clog2++;
n >>= 1;
end

end
endfunction

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

begin
qout <= ’0;
a_1 <= ’0;
end

else if (load)
begin
qout <= ain;
a_1 <= ’0;
end

else if (count > 0)
begin
a_1 <= qout[0];

102 SystemVerilog Models of Sequential Logic Blocks

qout <= {alu_out[BL-1],alu_out[BL-1:0],
qout[AL-1:1]};

end

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

count <= 0;
else if (load)
count <= AL;

else
count <= count - 1;

always_comb
case ({qout[0], a_1})
2’b01: alu_out = qout[QL-1:AL] + bin;
2’b10: alu_out = qout[QL-1:AL] - bin;
default: alu_out = qout[QL-1:AL];

endcase

always_comb
if (˜load & !count)

ready = ’1;
else

ready = ’0;

endmodule

5.8 Testbenches for Sequential Building Blocks
In the previous chapter, we looked at how testbenches for combinational circuits can
be designed. Here and in the next chapter, we consider testbenches for sequential
circuits. In this section, we consider clock generation, modeling asynchronous resets,
and other deterministic signals. We also look at collecting responses. In the next
chapter, we extend these ideas to synchronization with the clock.

5.8.1 Clock Generation
The most important signal in any design is the clock. In the simplest case, a clock
can be generated by inverting its value at a regular interval.

The default value of any signal is “x.” Simply inverting a signal at a regular
interval will invert the “x” value. Thus, the following will not work; the clock would
stay at “x”:

assign #10ps clock = ˜clock;

5.8 Testbenches for Sequential Building Blocks 103

Therefore, the signal has to be initialized. This could be done by using an initial
procedure:

initial clock = ’0;

always #10ps clock = ˜clock;

This explicitly uses the initial procedure as an initialization. In this case, the
approach will work, but in general this is a poor coding style. The clock signal is
driven from two procedures. We cannot be certain in which order procedures will
be executed. Some simulators will evaluate procedures in order of declaration; other
simulators will evaluate all the initial procedures first. It is far better to drive each
signal from exactly one procedure. An example of this is

initial
begin
clock = ’0;
forever #10ps clock = ˜clock;
end

This could also be done by assigning specific values to the clock.

always
begin
#10ps clock = ’0;
#10ps clock = ’1;
end

All of these clock generation examples model a clock with equal high and low
periods. The following example shows a clock generator in which the frequency and
mark/space ratio are parameters. Notice that (a) the time precision is specified to be
one-tenth of the time unit and (b) the clock frequency and mark period are specified
as real numbers. Both of these conditions must be fulfilled for the example given
to simulate correctly. If the frequency were specified as an integer, a mark period of
45% will cause a clock to be generated with a period of 9 ns, and mark and space
times of 4 ns and 5 ns, respectively, because of rounding errors.

module Clockgen;
timeunit 1ns;
timeprecision 100ps;
parameter ClockFreq_MHz = 100.0; // 100 MHz
parameter Mark = 45.0; // Mark length %
// Mark time in ns
parameter ClockHigh = (Mark*10)/ClockFreq_MHz;

// Space time in ns
parameter ClockLow = ((100 - Mark)*10)/ClockFreq_MHz;

104 SystemVerilog Models of Sequential Logic Blocks

logic clock;

initial
begin
clock = ’0;
forever

begin
#ClockLow clock = ’1;
#ClockHigh clock = ’0;
end

end

endmodule

5.8.2 Reset and Other Deterministic Signals
After the clock, the next most important signal is probably the reset (or set). The
clock generation process repeats, but the reset signal is usually only asserted once
at the beginning of a simulation, so an initial statement is used.

initial
begin

n_reset = ’1;
#1ns n_reset = ’0;
#1ns n_reset = ’1;
end

This is exactly the same, in form, as the signal generation process for combina-
tional circuits as given in the previous chapter. Note that the reset is de-asserted at
the start of the simulation and asserted a short time later. This is to ensure that the
state of the circuit prior to the reset can be observed. In exactly the same way, other
deterministic waveforms can be generated.

initial
begin

data = 4’b1111;
#10ns data = 4’b0010;
#20ns data = 4’b1101;
#5ns data = 4’b0000;
end

5.8.3 Checking Responses
In the previous chapter, we saw how an error signal can be generated if a combina-
tional model behaves in a different way from that expected.

5.8 Testbenches for Sequential Building Blocks 105

The simplest, simulator-independent way to monitor what is happening is to
write messages to the user. For example, the following procedure is executed when-
ever the output of the counter of Section 5.5.1 changes.

always @(count)
$display("%t Counter has value %d", $time, count);

The system task $display writes text in a similar way to printf in C. The
system function $time returns the current simulation time. There are two system
tasks: $display and $write for generating general textual output. The difference
between them is that $display automatically includes a new line character, while
$write does not. %t is an example of a format specifier.

Table 5.7 lists all of the format specifiers. Note that either upper or lower case
specifiers may be used (e.g., %t and %T are equivalent).

All specifiers appear in a string and (except for %m) require a parameter fol-
lowing in the $display or $write call. The data is right justified unless a format
specifier is included. Except for real numbers, only the value 0 may be used, which
suppresses leading spaces (e.g., %0o). Real numbers may be formatted as in C (e.g.,
%10.3f prints a number in 10 places with 3 fractional places.)

In the first string parameter, there can be a number of special characters as
shown in Table 5.8.

Two other output tasks allow signals to be displayed: $monitor and $strobe.
While$display and$write generate outputs at exactly the point at which they are
called in the simulation cycle, $monitor outputs data continuously while $strobe
only outputs data at the end of the simulation cycle. Only one $monitor process

Table 5.7 Format Specifiers

Specifier Meaning

%h Hexadecimal format
%d Decimal format
%o Octal format
%b Binary format
%c ASCII character format
%v Net signal strength
%m Hierarchical name of current scope
%s String
%t Time
%e Real in exponential format
%f Real in decimal format
%g Real in exponential or decimal format

106 SystemVerilog Models of Sequential Logic Blocks

Table 5.8 Special Characters

Symbol Meaning

\n New line
\t Tab
\\ \character
\” ” character
\xyz Where xyz are octal digits—the character

given by that octal code
%% % character

can be active at a time. Every time one of the arguments to the monitor task changes,
a new set of data is displayed. On the other hand, the $strobe task will only display
stable data—the state of signals at the end of the cycle, just before moving to the
next simulation time.

Summary
In this chapter, we discussed a number of common sequential building blocks.
SystemVerilog models of these blocks have been written using processes. Most
of these models are synthesizable using RTL synthesis tools. We also considered
examples of testbenches for sequential circuits.

Further Reading
As with combinational blocks, manufacturers’ data sheets are a good source of
information about typical devices. In particular, it is worthwhile to look in some
detail at the timing specifications for SRAM and DRAM devices. The multiplier is
an example of how relatively complicated computer arithmetic can be performed.
Hennessey and Patterson [9] have a good description of computer arithmetic units.

Exercises
5.1 Show how positive edge-triggered behavior can be described in

SystemVerilog.

5.2 Write a behavioral SystemVerilog model of a negative edge-triggered D
flip-flop with asynchronous active-low set and synchronous active-high reset.

5.3 Write a SystemVerilog model of a negative edge-triggered T-type flip-flop.

5.4 Write a SystemVerilog model of a 10-state synchronous counter that asserts
an output when the count reaches 10.

Exercises 107

5.5 Write a SystemVerilog model of an N-bit counter with a control input “Up.”
When the control input is 1, the counter counts up; when it is 0, the counter
counts down. The counter should not, however, wrap round. When the all 1s
or all 0s states are reached, the counter should stop.

5.6 Write a SystemVerilog model of an N-bit parallel to serial converter.

5.7 Write a SystemVerilog testbench for this parallel to serial converter.

5.8 What are the advantages and disadvantages of ripple counters as opposed to
synchronous counters?

5.9 Design a synchronous Johnson counter that visits eight distinct states in
sequence. How would this counter be modified such that any unused states
lead, eventually, to the normal counting sequence?

5.10 Design an LFSR that cycles through the following states:
001,010,101,011,111,110,100
Verify your design by simulation.

5.11 Explain the function of the device shown in Figure 5.14. Your answer should
include a description of all of the symbols.

CTRDIV16

CT = 0

M1
M2

C3/2+

2CT = 15

1,3D
[1]

[2]

[4]

[8]

Figure 5.14 Device for Exercises 5.11 and 5.12.

5.12 Show, with a full circuit diagram, how the device of Figure 5.14 could be
used to build a synchronous counter with 12 states. Show how a synchronous
reset can be included.

This page intentionally left blank

6Synchronous Sequential
Design

Thus far we have looked at combinational and sequential building blocks. Real
digital systems are usually synchronous sequential systems. In this chapter we explain
how general synchronous sequential systems are designed. We then describe how
such systems may be modeled in SystemVerilog.

6.1 Synchronous Sequential Systems
Almost all large digital systems have some concept of state built into them. In other
words, the outputs of a system depend on past values of its inputs as well as the
present values. Past input values either are stored explicitly or cause the system to
enter a particular state. Such systems are known as sequential systems, as opposed to
combinational systems. A general model of a sequential system is shown in Figure 6.1.
The present state of the system is held in the registers—hence, the outputs of the
registers give the value of the present state, and the inputs to the registers will be
the next state.

The present state of the system can be updated as soon as the next state changes,
in which case the system is said to be asynchronous, or the present state can be
updated only when a clock signal changes, which is synchronous behavior. In this
chapter, we describe the design of synchronous systems. In general, synchronous
design is easier than asynchronous design, so we will leave discussion of the latter
topic until Chapter 13.

109

110 Synchronous Sequential Design

Inputs Outputs
Combinational

Logic

Registers

Next
State

Present
State

Figure 6.1 General sequential system.

In this chapter we consider the design of synchronous sequential systems. Many
real systems are too complex to design in this way; thus, in Chapter 7 we show that
more complex designs can be partitioned. Nevertheless, the formal design methods
described in this chapter must be applied to at least part of the design of larger
systems. In the next section, we introduce, by way of a simple example, a method of
formally specifying such systems. We then go on to describe the problems of state
assignment, state minimization and the design of the next state, and output logic.
Throughout we illustrate how designs can also be modeled using SystemVerilog.

6.2 Models of Synchronous Sequential Systems
6.2.1 Moore and Mealy Machines
There are two common models of synchronous sequential systems: the Moore ma-
chine and the Mealy machine. These are illustrated in Figure 6.2. Both types of
system are triggered by a single clock. The next state is determined by some (com-
binational) function of the inputs and the present state. The difference between the
two models is that in the Moore machine, the outputs are solely a function of the
present state, while in the Mealy machine, the outputs are a function of the present
state and the inputs. Both the Moore and Mealy machines are commonly referred
to as state machines. That is to say, they have an internal state that changes.

6.2.2 State Registers
As was seen in Chapter 2, combinational logic can contain hazards. The next state
logic of the Moore and Mealy machines is simply a block of combinational logic with
a number of inputs and a number of outputs. The existence of hazards in this next
state logic could cause the system to go to an incorrect state. There are two ways

6.2 Models of Synchronous Sequential Systems 111

Inputs

Next State
Logic

Output
Logic

Output
Logic

Clock

OutputsState
Register

State
Register

Inputs

Next State
Logic

Clock

Outputs

Moore Machine

Mealy Machine

Figure 6.2 Moore and Mealy machines.

to avoid such a problem: either the next state logic should include the redundant
logic needed to suppress the hazard or the state machine should be designed such
that a hazard is allowed to occur but is ignored. The first solution is not ideal, as
the next state logic is more complex; hence, the second approach is used. (Note
that asynchronous systems are susceptible to hazards, and the next state logic must
prevent any hazards from occurring, which is one reason why synchronous systems
are usually preferred.)

To ensure that sequential systems are able to ignore hazards, a clock is used to
synchronize data. When the clock is invalid, any hazards that occur can be ignored.
A simple technique, therefore, is to logically AND a clock signal with the system
signals—when the clock is at logic 0, any hazards would be ignored. The system is,
however, still susceptible to hazards while the clock is high. It is common, therefore,
to use registers that are only sensitive to input signals while the clock is changing.
The clock edge is very short compared with the period of the clock. Therefore, the
data only has to be stable for the duration of the clock change, with small tolerances
before and after the clock edge. These timing tolerance parameters are known as
the setup and hold times (tSETUP, tHOLD), respectively, as shown in Figure 6.3.

The state registers for a synchronous state machine are therefore edge-triggered
D flip-flops. Other types of flip-flop may be used to design synchronous systems,
but they offer few advantages and are not common in programmable logic.

112 Synchronous Sequential Design

tSETUP tHOLD

tRISE

Figure 6.3 Setup and hold times.

6.2.3 Design of a Three-Bit Counter
In the next section, we introduce a formal notation for synchronous sequential
systems. First, however, we consider the design of a simple system that does not
need a formal description. Let us design, using positive edge-triggered D flip-flops,
a counter that, on rising clock edges, counts through the binary sequence from 000
to 111, at which point it returns to 000 and repeats the sequence.

The three bits will be labeled A, B , and C . The truth table is shown in Table 6.1,
in which A+, B+, and C+ are the next states of A, B , and C .

A+ etc. are the inputs to the state register flip-flops; A etc. are the outputs.
Therefore, the counter has the structure shown in Figure 6.4. The design task is
thus to derive expressions for A+, B+, and C+ in terms of A, B , and C . From the
truth table, K-maps can be drawn, as shown in Figure 6.5. Hence, the following
expressions for the next state variables can be derived.

A+ = A · C̄ + A · B̄ + Ā · B · C

B+ = B · C̄ + B̄ · C

C+ = C̄

The full circuit for the counter is shown in Figure 6.6.

Table 6.1 Truth Table of a Counter

ABC A+ B+C+

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

6.2 Models of Synchronous Sequential Systems 113

1D

C1

1D

C1

1D

C1

A

B

C

A+

B+

C+

Next
State
Logic

Clock

Figure 6.4 Structure of a 3-bit counter.

00 01

0

1

0 0

0 1

AB
C

1 1

0 1

11 10

00 01

0

1

0 1

1 0

AB
C

1 0

0 1

11 10

00 01

0

1

1 1

0 0 0

AB
C

1 1

0

11 10

B+:

A+:

C+:

Figure 6.5 K-maps for a 3-bit counter.

114 Synchronous Sequential Design

1D

C1

1D

C1

1D

C1

A

B

C

A+

B+

C+

Clock

A

B

C

Figure 6.6 A 3-bit counter circuit.

6.3 Algorithmic State Machines
The counter designed in the previous section could easily be described in terms
of state changes. Most sequential systems are more complex and require a formal
notation to fully describe their functionality. From this formal notation, a state
table and hence Boolean expressions can be derived. There are a number of types
of formal notation that may be used. We briefly refer to one before introducing
the principal technique used in this book—the algorithmic state machine (ASM)
chart.

The form of an ASM chart is best introduced by an example. Let us design a
simple controller for a set of traffic signals, as shown in Figure 6.7. This example
is significantly simpler than a real traffic signal controller (and would probably be
more dangerous than an uncontrolled junction!). The traffic signals have two lights
each—red and green. The major road normally has a green light, while the minor
road has a red light. If a car is detected on the minor road, the signals change to red
for the major road and green for the minor road. When the lights change, a timer is
started. Once that timer completes, a TIMED signal is asserted, which causes the
lights to change back to their default state.

6.3 Algorithmic State Machines 115

Major Road

Minor RoadSensor

Figure 6.7 Traffic signal problem.

The functionality of this system can be described by the state machine diagram
of Figure 6.8. This form of diagram is commonly used, but can be unclear. For
some systems (e.g., that of Figure 12.19), such diagrams are sufficient. In this book,
however, we generally use ASM charts, which are much less ambiguous. The ASM
chart for the traffic signal controller is shown in Figure 6.9.

ASM charts resemble flow charts, but contain implicit timing information—the
clock signal is not explicitly shown in Figure 6.9. It should be noted that ASM charts
represent physical hardware. Therefore, all transitions within the ASM chart must
form closed paths—hardware cannot suddenly start or stop (the only exception to
this might be a reset state to which the system never returns).

The basic component of an ASM chart is the state box, shown in Figure 6.10(a).
The state takes exactly one clock cycle to complete. At the top left-hand corner, the
name of the state is shown. At the top right-hand corner, the state assignment

MAJOR = R
MINOR = G

MAJOR = G
MINOR = R

CAR/START_TIMER

TIMED

CAR

TIMED

Figure 6.8 State machine of a traffic signal controller.

116 Synchronous Sequential Design

MAJOR = GRN
MINOR = RED

CAR

START_TIMER

MAJOR = RED
MINOR = GRN

TIMED
01

0

1

G

R

Figure 6.9 ASM chart of a traffic signal controller.

(Section 6.4.2) may be given. Within the state box, the output signals are listed. The
signals take the values shown for the duration of the clock cycle and are reset to their
default values for the next clock cycle. If a signal does not have a value assigned to it
(e.g., Y), that signal is asserted (logic 1) during the state and is deasserted elsewhere.
The notation X ← 1 means that the signal is assigned at the end of the state (i.e.,
during the next clock cycle) and holds its value until otherwise set elsewhere.

X = 1
Y

J Z = 1
0

1

A 1011

(a) (b) (c)

Figure 6.10 ASM chart symbols.

6.3 Algorithmic State Machines 117

A decision box is shown in Figure 6.10(b). Two or more branches flow from
the decision box. The decision is made from the value of one or more input signals.
The decision box must follow and be associated with a state box. Therefore, the
decision is made in the same clock cycle as the other actions of the state. Hence, the
input signals must be valid at the start of the clock cycle.

A conditional output box is shown in Figure 6.10(c). A conditional output
must follow a decision box. Therefore, the output signals in the conditional output
box are asserted in the same clock cycle as those in the state box to which it is
attached (via one or more decision boxes). The output signals can change during
that state as a result of input changes. The conditional output signals are sometimes
known as Mealy outputs because they are dependent on input signals, as in a Mealy
machine.

It can therefore be seen that one state, or clock cycle, consists of more than just
the state box. Decision boxes and conditional output boxes also form part of the
state. Figure 6.9 can be redrawn, as in Figure 6.11, where all the components of a
state are enclosed within dashed lines.

MAJOR = GRN
MINOR = RED

CAR

START_TIMER

MAJOR = RED
MINOR = GRN

TIMED
01

0

1

G

1 clock
cycle

R

Figure 6.11 ASM chart showing clock cycles.

118 Synchronous Sequential Design

Z

C

W

0

1

Y

Z

C

W

0

1

Y

(a) (b)

Figure 6.12 Conditional and unconditional outputs.

The difference between state boxes and conditional output boxes is illustrated
in Figure 6.12. In Figure 6.12(a), there are two states. Output Y is asserted during
the first state if input C is true or becomes true. In Figure 6.12(b), there are three
states. The difference can be seen in the timing diagrams of Figure 6.13.

Clock

ASM (a)

Z

Y, C = 1

Y, C = 0

W

ASM (b)

Z

Y, C = 1

W, C = 1

Y, C = 0

W, C = 0

C tested here

Figure 6.13 Timing diagram for Figure 6.12.

6.4 Synthesis from ASM Charts 119

6.4 Synthesis from ASM Charts
6.4.1 Hardware Implementation
An ASM chart is a description or specification of a synchronous sequential system.
It is an abstract description in the sense that it describes what a system does, but not
how it is done. Any given (nontrivial) ASM chart may be implemented in hardware
in more than one way. The ASM chart can, however, be used as the starting point
of the hardware synthesis process. To demonstrate this, an implementation of the
traffic signal controller will first be designed. We then use further examples to show
how the state minimization and state assignment problems may be solved.

The ASM chart in Figure 6.9 may be equivalently expressed as a state and output
table, as shown in Table 6.2. The outputs to control the traffic signals themselves are
not shown, but otherwise the state and output table contains the same information
as the ASM chart. As we will see, the state and output table is more compact than
an ASM chart and is therefore easier to manipulate.

To implement this system in digital hardware, the abstract states, G and R, have
to be represented by Boolean variables. Here, the problem of state assignment is
nearly trivial. Two states can be represented by one Boolean variable. For example,
when the Boolean variable, A, is 0 it can represent state G, and when it is 1, state
R. It would be equally valid to use the opposite values. These values for A can be
substituted into the state and output table to give the transition and output table
shown in Table 6.3.

This transition and output table is effectively two K-maps superimposed on
each other. These are explicitly shown in Figure 6.14. From these, expressions can
be derived for the state variable and the output.

A+ = Ā · C AR + A · T I ME D

ST ART T I ME R = Ā · C AR

Table 6.2 State and Output Table

CAR, TIMED

Present State 00 01 11 10

G G,0 G,0 R,1 R,1
R R,0 G,0 G,0 R,0

Next State, START TIMER

120 Synchronous Sequential Design

Table 6.3 Transition and Output Table

CAR, TIMED

A 00 01 11 10

0 0,0 0,0 1,1 1,1
1 1,0 0,0 0,0 1,0

A+, START TIMER

00 01

0

1

0 0

1 0

CAR, TIMED

A

A+:

1 1

0 1

11 10

00 01

0

1

0 0

0 0

A

START_TIMER:

1 1

0 0

11 10

CAR, TIMED

Figure 6.14 K-maps for a traffic signal controller.

For completeness, a hardware implementation is shown in Figure 6.15. The two
flip-flop outputs can be used directly to control the traffic signals, so that when A
is 1 (and Ā is 0), the signal for the major road is green, and the signal for the minor
road is red. When A is 0, the signals are reversed.

1D

C1

AA+

Clock
ACAR

TIMED

START_TIMER

Figure 6.15 Circuit for a traffic signal controller.

6.4 Synthesis from ASM Charts 121

6.4.2 State Assignment
In the previous example, there were two possible ways to assign the abstract states,
G and R, to the Boolean state variable, A. With more states, the number of possible
state assignments increases. In general, if we want to code s states using a minimal
number of D flip-flops, we need m Boolean variables, where 2m−1 < s ≤ 2m. The
number of possible assignments is given by

(2m)!
(2m − s)!

.

This means, for example, that there are 24 ways to encode three states using
two Boolean variables and 6720 ways to encode five states using three Boolean
variables. In addition, there are possible state assignments that use more than the
minimal number of Boolean variables, which may have advantages under certain
circumstances. There is no known method for determining in advance which state
assignment is “best” in the sense of giving the simplest next state logic. It is obviously
impractical to attempt every possible state assignment. Therefore, a number of ad
hoc guidelines can be used to perform a state assignment. Again, let us use an
example to demonstrate this.

A synchronous sequential system has two inputs, X and Y, and one output,
Z . When the sum of the inputs is a multiple of 3, the output is true—it is false
otherwise. The ASM chart is shown in Figure 6.16.

To encode the three states, we need (at least) two state variables and hence two
flip-flops. As noted previously, there are 24 ways to encode three states; which should
we use? We could arbitrarily choose any one of the possible state assignments, or
we could apply one or more of the following guidelines.

• It is good practice to provide some means of initializing the state machine
when power is first applied. This can be done using the asynchronous resets
or sets on the system flip-flops. Therefore, the first state (state A in this
example) can be coded as all 0s or all 1s.

• We can use the normal binary counting sequence for further states (e.g., B
becomes 01 and C becomes 10).

• We can minimize the number of bits that change between states, for example,
by using a Gray code. (This doesn’t help in this example as transitions exist
from each state to every other state.)

• The states might have some particular meaning. Thus, a state variable bit
might be set in one state but in no others. (This can result in a non-minimal

122 Synchronous Sequential Design

Z = 1

Z = 0

Z = 0

X

Y Y

X

Y Y

X

Y Y

0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1

0 1

A

B

C

Figure 6.16 ASM chart for a sequence detector.

number of state variables but very simple output logic, which under some
circumstances can be very desirable.)

• We can use one variable per state. For three states, we would have three state
variables and hence three flip-flops. The states would be encoded as 001, 010,
and 100. This is known as “one-hot” encoding, as only one flip-flop is asserted
at a time. Although this appears to be very non-optimal, there may be
advantages to the one-hot (or “one-cold”) method. The next state logic may be
relatively simple. In some forms of programmable logic, such as FPGAs, there
is a very high ratio of flip-flops to combinational logic. A one-hot encoded
system may therefore use fewer resources than a system with a minimal
number of flip-flops. Furthermore, because exactly one flip-flop output is
asserted at a time, it is relatively easy to detect a system malfunction in which
this condition is not met. This can be very useful for safety-critical systems.

Let us therefore apply a simple state encoding to the example. The state and
output table is shown in Table 6.4, and the transition and output table is shown in

6.4 Synthesis from ASM Charts 123

Table 6.4 State and Output Table for
Sequence Detector

X, Y

P 00 01 11 10

A A,1 B,1 C,1 B,1
B B,0 C,0 A,0 C,0
C C,0 A,0 B,0 A,0

P +, Z

Table 6.5 Transition and Output Table for
Sequence Detector

X,Y

S1S0 00 01 11 10

00 00,1 01,1 11,1 01,1
01 01,0 11,0 00,0 11,0
11 11,0 00,0 01,0 00,0

S+
1 S+

0 , Z

Table 6.5, where state A is encoded as 00, B as 01, and C as 11. The combination
10 is not used.

The fact that we have one or more unused combinations of state variables
may cause a problem. These unused combinations are states of the system. In nor-
mal operation, the system would never enter these “unused states.” Therefore, in
principle, we can treat the next state and output values as don’t cares, as shown in
Figure 6.17.

00 01

00

01

0 0

0 1

XY

S1
+: S0

+:

1 0

0 1

11 10

11

10

1 0 0 0

–

00 01

00

01

0 1

1 1

XY

S1S0S1S0

1 1

0 1

11 10

11

10

1 0 1 0

– – – –– – –

Figure 6.17 K-maps with don’t cares.

124 Synchronous Sequential Design

This gives the next state equations:

S+
1 = S1 · X̄ · Ȳ + S1 · S0 · X̄ · Y + S0 · X · Y + S1 · S0 · X · Ȳ

S+
0 = S0 · X̄ · Ȳ + S1 · X̄ · Y + S0 · X + S1 · S0 · Ȳ + S1 · X · Y

The output expression can be read directly from the transition and output
table:

Z = S0

By default, therefore, the transitions from the unused state have now been
defined, as shown in Table 6.6. Although this unused state should never be entered,
it is possible that a “non-logical” event, such as a glitch on the power supply, might
cause the system to enter this unused state. It can be seen from Table 6.6 that if,
for example, the inputs were both 0, the system would stay in the unused state. In
the worst case, once having entered an unused state, the system might be stuck in
one or more unused states. The unused states could therefore form a “parasitic”
state machine (or perhaps a “parallel universe”!), causing the system to completely
malfunction. We could, reasonably, decide that the chances of entering an unused
state are so low as to be not worth worrying about. Hence, we treat the transition
table entries for the unused states as don’t cares, as shown, which minimizes the
next state logic. On the other hand, the system might be used in a safety-critical
application. In this case, it might be important that all transitions from unused states
are fully defined, so that we can be certain to return to normal operation as soon
as possible. In this case, the transitions from the unused state would not be left as
don’t cares in the K-maps, but would be explicitly set to lead to, say, the all 0s state.

Table 6.6 Transition Table Implied by Don’t Cares

X,Y

S1S0 00 01 11 10

00 00,1 01,1 11,1 01,1
01 01,0 11,0 00,0 11,0
11 11,0 00,0 01,0 00,0
10 10,1 00,1 11,1 01,1

S+
1 S+

0 , Z

6.4 Synthesis from ASM Charts 125

Hence, the X entries in the K-maps of Figure 6.17 become 0s, and the next state
equations would be:

S+
1 = S1 · S0 · X̄ · Ȳ + S1 · S0 · X̄ · Y + S1 · S0 · X · Y + S1 · S0 · X · Ȳ

S+
0 = S0 · X̄ · Ȳ + S1 · X̄ · Y + S1 · S0 · X + S1 · S0 · Ȳ + S1 · S0 · X · Y

These equations are more complex than the previous set that includes the don’t
cares; hence, the next state logic would be more complex.

Therefore, we have a choice: We can either assume that it is impossible to enter
an unused state and minimize the next state equations by assuming the existence of
don’t cares or we can try to reduce the risk of becoming stuck in an unused state
by explicitly defining the transitions from the unused states and hence have more
complex next state logic.

6.4.3 State Minimization
In the previous section we noted that to encode s states we need m flip-flops, where
2m−1 < s ≤ 2m. If we can reduce the number of states in the system, we might
reduce the number of flip-flops, hence making the system simpler. Such savings
may not always be possible. For instance, the encoding of 15 states requires four
flip-flops. If we reduced the number of states to nine, we would still need four
flip-flops. So there would be no obvious saving and we would have increased the
number of unused states, with the potential problems discussed in the previous
section. As will be seen, state minimization is a computationally difficult task, and
in many cases, it would be legitimate to decide that there would be no significant
benefits and hence the task would not be worth performing.

State minimization is based on the observation that if two states have the same
outputs and the same next states, given a particular sequence of inputs, it is not
possible to distinguish between the two states. Hence, the two states are considered
to be equivalent and hence they may be merged, reducing the total number of
states.

For example, let us design the controller for a ticket vending machine. A 7-day
subway ticket costs $40. The machine accepts $20 and $10 bills (all other bills are
rejected by the mechanics of the system). Once $40 has been inserted, the ticket
is dispensed. If more than $40 is inserted, all bills are returned. The machine has
two lights: one to show that it is ready for the next transaction, and one to show
that further bills need to be inserted. The ASM chart has been split into two parts
(Figures 6.18 and 6.19)—the connections between the two parts are shown by circles
with lower case letters.

126 Synchronous Sequential Design

(a)

$20

$10

Ready
Dispense

BillBill

$20

$10

$20

$10

c d e b

a

A
B

DC

Y

N

Y Y

N N

Y

N

Y

N

Y N

Figure 6.18 ASM chart of a vending machine (Part 1).

There are nine states in this state machine. Four flip-flops would therefore be
required to implement it. If we could merge at least two states, we would save
ourselves a flip-flop. From Figures 6.18 and 6.19, notice that states F , G, and H
all have transitions to state I if a $20 bill is inserted and to state B if a $10 bill is
inserted. Otherwise, all three states have transitions back to themselves. Intuitively,
these three states would appear to be equivalent. Another way of looking at this
is to say that states F , G, and H all represent the condition where another $10 is
expected to complete the sale of a ticket. From the point of view of the purchaser,
these states are indistinguishable.

Instead of attempting to manipulate the ASM chart, it is probably clearer to
rewrite it as a state and output table (Figure 6.20). The “Other” column shows the
next state if no valid bill is inserted. Because there are no conditional outputs, it is
possible to separate the outputs from the next state values.

The condition for two states to be considered equivalent is that their next
states and outputs should be the same. States A, B , and I have unique outputs and
therefore cannot be equivalent to any other states. States C to H inclusive have the

6.4 Synthesis from ASM Charts 127

(b)

Bill

$20

$10

Bill

$20

$10

Bill

$20

$10

Bill

$20

$10

c

d

e

b

Return

a

E

G

F

Y

N

N

Y

Y

N
N Y

Y

N

YN Y

N
N

Y

H

I

Figure 6.19 ASM chart of a vending machine (Part 2).

same outputs. States F , G, and H have the same next states, other than their default
next states, which are the states themselves. In other words, states F , G, and H are
equivalent if states F , G, and H are equivalent—which is a tautology! Therefore, we
can merge these three states. In other words, we will delete states G and H, say, and

State

A
B
C
D
E
F
G
H
I

$20 $10 Ready Dispense Return Bill

1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1

0
0
1
1
1
1
1
1
0

0
1
0
0
0
0
0
0
0

Next State Outputs

Other

A
A
C
D
E
F
G
H
A

C
A
E
F
G
B
B
B
A

D
A
H
B
B
I
I
I
A

Figure 6.20 State and output table for a vending machine.

128 Synchronous Sequential Design

State

A
B
C
D
E
F
G
H
I

$20 $10 Ready Dispense Return Bill

1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1

0
0
1
1
1
1
1
1
0

0
1
0
0
0
0
0
0
0

Next State Outputs

Other

A
A
C
D
E
F
G
H
A

F

F

C
A
E
F
G
B
B
B
A

D
A
H
B
B
I
I
I
A

Figure 6.21 State table with states G and H removed.

replace all instances of those two states with state F (Figure 6.21). Now states D and
E are equivalent, so E can be deleted and replaced by D (Figure 6.22). The system
has therefore been simplified from having nine states to having six. It should be
remembered that the system may be implemented with nine states or with six, but it
is not possible for an external observer to know which version has been built simply
by observing the outputs. The two versions are therefore functionally identical.

To conclude this example, the next state and output expressions will be written,
assuming a one-hot implementation; that is, there is one flip-flop per state, of which
exactly one has a 1 output at any time. The next state and output expressions can
be read directly from the state and output table of Figure 6.22.

A+ = B + I + $20 · $10 · A

B+ = D · $20 + F · $10

C+ = A · $10 + $20 · $10 · C

D+ = A · $20 + C · $10 + $20 · $10 · D

F + = C · $20 + D · $10 + $20 · $10 · F

State

A
B
C
D
E
F
G
H
I

$20 $10 Ready Dispense Return Bill

1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1

0
0
1
1
1
1
1
1
0

0
1
0
0
0
0
0
0
0

Next State Outputs

Other

A
A
C
D
E
F
G
H
A

F D

F

C
A
E
F
G
B
B
B
A

D
A
H
B
B
I
I
I
A

Figure 6.22 State table with states E, G, and H removed.

6.5 State Machines in SystemVerilog 129

I + = F · $20

Ready = A

Dispense = B

Retur n = I

Bill = C + D + F

6.5 State Machines in SystemVerilog
6.5.1 A First Example
SystemVerilog is a very rich language in terms of constructs. Therefore, there is
often more than one way to describe something. Here, we will look at two styles
for modeling state machines. Both are synthesizable, and both simulate. To some
extent, the choice of style is a matter of taste. It should, however, be noted that some
synthesis tools produce better results with one style rather than the other.

The state of the system must be held in an internal register. In SystemVerilog,
the state can be represented by an enumerated type. The possible values of this type
are the state names and the name of the variable is given after the list of values, for
example,

enum {s0, s1, ...} state;

In the following listing, there are two procedural blocks. Each has a label. The
first procedural block (SEQ) models the state machine itself. The procedural block
waits until the clock input changes to 1, or the reset changes to 0. The asynchronous
reset is tested first, and if it is asserted, a default value is assigned to the state.
Otherwise, a case statement is used to branch according to the current value of the
state. Each branch of the case statement is therefore equivalent to one of the states
of Figure 6.9, together with its decision box. Within the first statement branch, the
car input is tested to set the state. If the input is false, the state remains as it was
(i.e., G). This is fine, as the block is declared to be always_ff and therefore we
would expect the state to be mapped onto one or more edge-triggered flip-flops.
The other state is structured in a similar way.

In the second procedural block (OP), the outputs are set. This is an
always_comb block. Note that start timer and the other outputs are given de-
fault values at the beginning. This is good practice, as it ensures that latches will not
be accidentally created. Again, a case statement is used. The structure mirrors the

130 Synchronous Sequential Design

ASM chart. Unconditional outputs are assigned in each state; conditional assign-
ments follow an if statement.

module traffic_1 (output logic start_timer,
major_green, minor_green,
input logic clock, n_reset, timed,
car);

enum {G, R} state;

always_ff @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

state <= G;
else

case (state)
G: if (car)

state <= R;
R: if (timed)

state <= G;
endcase

end

always_comb
begin: OP
start_timer = ’0;
minor_green = ’0;
major_green = ’0;
case (state)
G: begin

major_green = ’1;
if (car)

start_timer = ’1;
end

R: minor_green = ’1;
endcase
end

endmodule

Another common modeling style for state machines also uses two processes.
One process is used to model the state registers, while the second process models
the next state and output logic. The two processes therefore correspond to the
two boxes in Figure 6.1. From Figure 6.1, it can be seen that the communication
between the two processes is achieved using the present and next values of the state
registers. Therefore, if two SystemVerilog blocks are used, communication between
them must be performed using present and next state variables.

6.5 State Machines in SystemVerilog 131

The combinatorial block (labeled COM) combines the case statement parts
of the previous version. The case statement now selects on present_state and
next_state is updated. Note also that next_state is updated (to its existing
value) even when a change of state does not occur. Failure to do this would result
in latches being created.

module traffic_2 (output logic start_timer,
major_green, minor_green,
input logic clock, n_reset, timed,
car);

enum {G, R} present_state, next_state;

always_ff @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

present_state <= G;
else

present_state <= next_state;
end

always_comb
begin: COM
start_timer = ’0;
minor_green = ’0;
major_green = ’0;
next_state = present_state;
case (present_state)

G: begin
major_green = ’1;
if (car)

begin
start_timer = ’1;
next_state = R;
end

end
R: begin

minor_green = 1’b1;
if (timed)

next_state = G;
end

endcase
end

endmodule

132 Synchronous Sequential Design

It is also possible to derive a three-process model: state register; next state
evaluation, and output assignment. There is no obvious advantage to using this
model. A one-process model is usually wrong—all outputs would be registered.

Some general comments apply to all styles of state machine. The inputs and out-
puts are of type logic. Nonblocking assignments are always used in the always_ff
block, while blocking assignments are always used in the always_comb block.
Never mix the two types of assignment in one block. Also note that a variable is
only ever written to by one block. To avoid accidental latches, all the outputs in an
always_comb block are initialized at the start of the block.

6.5.2 A Sequential Parity Detector
Consider the following system. Data arrives at a single input, with one new bit per
clock cycle. The data are grouped into packets of 4 bits, where the fourth bit is
a parity bit. (This problem could easily be scaled to have more realistically sized
packets.) The system uses even parity. In other words, if there is an odd number of
1s in the first 3 bits, the fourth bit is a 1. If an incorrect parity bit is detected, an
error signal is asserted during the fourth clock cycle.

The parity detector can be implemented as a state machine. We will leave the
design as an exercise and simply show a SystemVerilog implementation. In this
example, an asynchronous reset is included to set the initial state to s0. Notice that
the error signal is only set under limited conditions, making the combinational logic
block very simple.

module seqparity (output logic error,
input logic clock, n_reset, a);

enum {s0, s1, s2, s3, s4, s5, s6} state;

always_ff @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

state <= s0;
else

case (state)
s0: if (˜a)

state <= s1;
else

state <= s2;
s1: if (˜a)

state <= s3;
else

state <= s4;

6.5 State Machines in SystemVerilog 133

s2: if (˜a)
state <= s4;

else
state <= s3;

s3: if (˜a)
state <= s5;

else
state <= s6;

s4: if (˜a)
state <= s6;

else
state <= s5;

s5: state <= s0;
s6: state <= s0;

endcase
end

always_comb
begin: COM
if ((state == s5 && a) || (state == s6 && ˜a))

error = ’1;
else

error = ’0;
end

endmodule

6.5.3 Vending Machine
The following piece of SystemVerilog is a model of the (minimized) vending machine
of Section 6.4.3. Two blocks are used. Note that here an asynchronous reset has been
provided to initialize the system when it is first turned on.

module vending(output logic ready,dispense,ret,bill
input logic clock,n_reset,twenty,ten);

enum {A, B, C, D, F, I} present_state, next_state;

always @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

present_state <= A;
else

present_state <= next_state;
end

always_comb

134 Synchronous Sequential Design

begin: COM
ready = ’0;
dispense = ’0;
ret = ’0;
bill = ’0;
case (present_state)
A : begin

ready = ’1;
if (twenty)

next_state = D;
else if (ten)

next_state = C;
else

next_state = A;
end

B : begin
dispense = ’1;
next_state = A;
end

C : begin
bill = ’1;
if (twenty)

next_state = F;
else if (ten)

next_state = D;
else

next_state = C;
end

D : begin
bill = ’1;
if (twenty)

next_state = B;
else if (ten)

next_state = F;
else

next_state = D;
end

F : begin
bill = ’1;
if (twenty)

next_state = I;
else if (ten)

next_state = B;
else

next_state = F;
end

6.5 State Machines in SystemVerilog 135

I : begin
ret = ’1;
next_state = A;
end

endcase
end

endmodule

6.5.4 Storing Data
One (of the many) problems with the traffic light controller of Section 6.5.1 is that
the minor road lights will switch to green as soon as a car is detected. This will
happen even if the lights have just changed. It would be preferable if the timer were
used to keep the major road lights green for a period of time. If we did this simply
by asserting the start timer signal in both states and waiting for the timed signal to
appear, as follows, an arriving car could easily be missed.

always_comb
begin: COM
start_timer = ’0;
minor_green = ’0;
major_green = ’0;
next_state = present_state;
case (present_state)

G: begin
major_green = ’1;
if (car && timed)

begin
start_timer = ’1;
next_state = R;
end

end
R: begin

minor_green = 1’b1;
if (timed)

start_timer = ’1;
next_state = G;

end
endcase
end

Therefore, the fact that a car has arrived needs to be remembered in some way.
This could be done by adding further states to the state machine. Alternatively,
the car arrival could be stored. It is not possible to say that one approach is better

136 Synchronous Sequential Design

than the other. We will look at the idea of using a state machine to control other
hardware in Chapter 7. Meanwhile, let us consider how a simple piece of data can be
stored.

In a purely simulation model, it is possible to store the state of a variable or
signal in a combinational process. This is done by assigning a value in one branch of
the process. As we will see in Chapter 10, when synthesized, this would inevitably
lead to asynchronous latches and hence timing problems. Instead, any data that is
to be stored must be explicitly saved in a register, modeled as a clocked process.
Storing data in this way is exactly the same as storing a state. Therefore, separate
signals are needed for the present value of the car register and for the next value.
We will use more meaningful names for these signals:

logic car_arrived, car_waiting;

The car_waiting signal is updated at the same time as the present_state
signal.

always_ff @(posedge clock, negedge n_reset)
if (˜n_reset)

begin
present_state <= G;
car_waiting <= ’0;
end

else
begin
present_state <= next_state;
car_waiting <= car_arrived;
end

The car_arrived signal is set or reset in the following process:

always_comb
begin: car_update
if (present_state == G && car_waiting && timed)

car_arrived = ’0;
else if (car)
car_arrived = ’1;

else
car_arrived = car_waiting;

end

Finally, both references to car in block com at the start of this section need to
be replaced by references to car_waiting. Notice that each signal is assigned in
only one block. It often helps to sketch a diagram of the system with each process

6.6 Testbenches for State Machines 137

represented by a box and showing all the inputs and outputs of each block. If a
signal appears to be an output from two boxes, or if a signal is not an input to a
block, something is not right!

6.6 Testbenches for State Machines
In the previous chapter, we considered testbenches for sequential logic. The function
of such testbenches was to generate clock and reset signals and to monitor outputs.
In this section, we look at how inputs to a state machine can be synchronized with
the clock and how we can use assert statements to monitor outputs.

In exactly the same way that an RTL model can be made sensitive to the clock or
to some other signal, parts of the testbench can also be made sensitive to the clock.
Here we use the event control construct (@) in a context other than an always block.
In the forever loop, the procedure waits for the rising edge of the clock, and then
waits for a further 5 ns before count is incremented. This ensures that the increment
does not coincide with the clock edge (assuming that the clock period is greater
than 5 ns).

integer count;

initial
begin
count = 0;
forever

begin
@(posedge clk);
#5ns count++;
end

end

This example has two forms of timing control: a delay control (#5ns) and an
event control (@(posedge clk)). Either or both forms can precede a statement;
thus, we could have written:

@(posedge clk) #5ns count++;

It is also possible to make a statement sensitive to any edge by writing,
for example, @clk. A third form of event control is the level sensitive wait
statement:

wait (!enable) #10ns count++;

138 Synchronous Sequential Design

If enable is at 1, the flow stops until enable becomes 0. If enable is already 0,
there is no delay.1

It is also possible to generate named events and to control the flow. For example,
one unit might have the named event trigger (defined as shown):

-> trigger;

In another process, there is an event control sensitive to that named event:

@trigger count++;

Summary
State machines can be formally described using ASM charts. The design of a syn-
chronous state machine from an ASM chart has a number of distinct steps: state
minimization, state assignment, derivation of next state, and output logic. A Sys-
temVerilog model of a state machine can be written that is equivalent to an ASM
chart. This SystemVerilog model may be automatically synthesized to hardware us-
ing an RTL synthesis tool.

Further Reading
State machine design is a core topic in digital design and therefore covered in
many textbooks. Not all books use ASM notation; many use the style of Figure 6.8.
The problem of state minimization is covered in detail in books such as Hill and
Peterson [10].

Exercises
6.1 Explain the difference between a Mealy machine and a Moore machine.

6.2 Describe the symbols used in an ASM diagram.

1. If you are familiar with VHDL, be careful! The behavior of a SystemVerilog wait statement is different
than a VHDL wait until statement.

Exercises 139

6.3 The following code shows part of a SystemVerilog description of a
synchronous state machine. Complete the description by writing down the
synchronization process. How would an asynchronous reset be included?

module state_machine (output logic z,
input logic x, clock);

enum {S0, S1, S2, S3} state, next_state;

// synchronization statements go here!

always_comb
begin: com
case (state)

S0: begin
z = ’0;
if (X)

next_state = S2;
else

next_state = S0;
end

S1: begin
z = ’1;
if (x)

next_state = S2;
else

next_state = S0;
end

S2: begin
z = ’0;
if (x)

next_state = S3;
else

next_state = S2;
end

S3: begin
z = ’0;
if (x)

next_state = S1;
else

next_state = S3;
end

endcase
end

endmodule

140 Synchronous Sequential Design

6.4 Draw the ASM chart that describes the state machine shown in Exercise 6.3.

6.5 Draw an ASM chart to describe a state machine that detects a sequence of
three logic 1s occurring at the input and that asserts a logic 1 at the output
during the last state of the sequence. For example, the sequence
001011101111 would produce an output 000000100011. Write a
SystemVerilog description of the state machine.

6.6 Write a testbench to stimulate the state machine of Exercise 6.5 and verify
the SystemVerilog model by simulation.

6.7 Produce next state and output logic for the state machine of Exercise 6.5
and write a SystemVerilog description of the hardware using simple
gates and positive edge-triggered D flip-flops. Verify this hardware by
simulation.

6.8 A state machine has two inputs, A, B, and one output, Z. If the sequence of
input pairs: A = 1 B = 1, A = 1 B = 0, A = 0 B = 0 is detected, Z becomes 1
during the final cycle of the sequence; otherwise, the output remains at 0.
Write a SystemVerilog model of a state machine to implement this system,
using two procedural blocks, such that one block models the state machine
and the other models the output logic.

6.9 Rewrite the model of Exercise 6.8 to use two procedural blocks: one for the
registers and one for the next state logic and output logic.

6.10 Using an ASM chart, design a traffic signal controller for a crossroads. The
signals change only when a car is detected in the direction with a red signal.
The signals change in the sequence: red, yellow, green, red. Note that while
the signals in one direction are green, or yellow, the signals in the other
direction are red (i.e., you need more than three states). Design an
implementation that uses a minimal number of D flip-flops.

6.11 A counter is required to count people entering and leaving a room. The room
has a separate entrance and exit. Sensors detect people entering and leaving.
Up to seven people are allowed in the room at one time. Draw an ASM chart
of a synchronous counter that counts the people in the room and that
indicates when the room is empty and full. One person may enter and one
person may leave during each clock cycle. The empty and full indicators
should be asserted immediately when the condition is true, that is, before the
next clock edge. Write a SystemVerilog model of the system.

6.12 Construct a state and output table for the state machine represented by
Figure 6.23. Show that the number of states can be reduced. Derive the next

Exercises 141

A

A

A

A

A

0 1

0 1

0 1 1

0

10

Z

Z

Z

Figure 6.23 ASM chart for Exercise 6.12.

state and output logic to implement the reduced state machine using (a) a
minimal number of D flip-flops and (b) the one hot D flip-flop method. What
are the relative advantages of each method? How has the reduction in the
number of states helped in each case?

This page intentionally left blank

7Complex Sequential
Systems

In the previous three chapters we looked at combinational and sequential building
blocks and the design of state machines. The purpose of this chapter is to see how
these various parts can be combined to build complex digital systems.

7.1 Linked State Machines
In principle, any synchronous sequential system could be described by an ASM
chart. In practice, this does not make sense. The states of a system, such as a micro-
processor, include all the possible values of all the data that might be stored in the
system. Therefore, it is usual to partition a design in some way. In this chapter, we
show first how an ASM chart, and hence the SystemVerilog model of the state ma-
chine, can be partitioned, and second how a conceptual split may be made between
the datapath of a system, that is, the components that store and manipulate data,
and the state machine that controls the functioning of those datapath components.

A large body of theory covers the optimal partitioning of state machines. In
practice, it is usually sufficient to identify components that can easily be separated
from the main design and implemented independently. For example, let us consider
again the traffic signal controller.

If a car approaches the traffic signals on the minor road, a sensor is activated
that causes the major road to have a red light and the minor road to have a green

143

144 Complex Sequential Systems

CAR 0

1

G

s0

s255

Figure 7.1 ASM chart of a traffic signal controller, including the timer.

light for a fixed interval. Once that interval has passed, the major road has a green
light again and the minor road has a red light. In Chapter 6, we simply assumed that
a signal would be generated after the given interval had elapsed. Let us now assume
that the clock frequency is such that the timed interval is completed in 256 clock
cycles. We can draw an ASM chart for the entire system as shown in Figure 7.1
(states 1 to 254 and the outputs are not shown, for clarity). Although this is a simple
example, the functionality of the system is somewhat lost in the profusion of states
that implement a simple counting function. It would be clearer to separate the traffic
light controller function from the timer.

One way of doing this is shown in Figure 7.2, in which there are two ASM
charts. The ASM chart on the left is the traffic light controller, in which a signal,
START, is asserted as a conditional output when a car is detected. This signal acts as
an input to the second state machine, allowing that state machine to move from the
IDLE state into the counting sequence. When the second state machine completes
the counting sequence, the signal TIMED is asserted, which acts as an input to the
first state machine, allowing the latter to move from state R to state G. The second
state machine moves back into the IDLE state.

A state machine of the form of the second state machine of Figure 7.2 can be
thought of as a “hardware subroutine.” In other words, any state machine may be
partitioned in this way. Unlike a software subroutine, however, a piece of hardware
must exist and must be doing something, even when it is not being used. Hence,
the IDLE state must be included to account for the time when the “subroutine” is
not doing a useful task.

7.1 Linked State Machines 145

START
0

1

IDLE

s0

s255

CAR
0

1

G

R

START

TIMED1 0

TIMED

Figure 7.2 Linked ASM charts for a traffic signal controller.

An alternative way to implement a subsidiary state machine is shown in
Figure 7.3. This version does not correspond to the hardware subroutine model,
but represents a conventional counter. The use of standard components is discussed
further in the next section.

ENABLE
0

1

s0

s255

CAR
0

1

G

R

ENABLE

TIMED
1 0

TIMED

ENABLE0

1

Figure 7.3 ASM chart of a traffic signal controller with counter.

146 Complex Sequential Systems

CLOCK

CAR

ENABLE

TIMED

256 Clock Cycles

Figure 7.4 Timing diagram of linked ASM charts.

From the ASM chart of Figure 7.1, it is quite clear that the system takes 256
clock cycles to return to state G after a car has been detected. The sequence of
operations may be harder to follow in Figure 7.3. In state s255, TIMED is asserted
as a conditional output. This causes the left-hand state machine to move from state
R to state G. In state R, ENABLE is asserted, which allows the right-hand state
machine to advance through its counting sequence. A timing diagram of this is
shown in Figure 7.4.

At first glance, this timing diagram may appear confusing. The ENABLE signal
causes the TIMED signal to be asserted during the final state of the right-hand
diagram. The TIMED signal causes the left-hand state machine to move from state
R to state G. According to ASM chart convention, both these signals are asserted
at the beginning of a state and deasserted at the end of a state. In fact, of course,
the signals are asserted some time after a clock edge and also deasserted after a
clock edge. Therefore, a more realistic timing diagram is given in Figure 7.5. The
changes to TIMED and ENABLE happen after the clock edges. This, of course, is
necessary in order to satisfy the setup and hold times of the flip-flops in the system.
The clock speed is limited by the propagation delays through the combinational
logic of both state machines. In that sense, a system divided into two or more
state machines behaves no differently than a system implemented as a single state
machine.

7.2 Datapath/Controller Partitioning 147

CLOCK

CAR

ENABLE

TIMED

256 Clock Cycles

Figure 7.5 Timing diagram showing delays.

7.2 Datapath/Controller Partitioning
Although any synchronous sequential system can be designed in terms of one or
more state machines, in practice this is likely to result in the “reinvention of the
wheel” on many occasions. For example, the right-hand state machine of Figure 7.3
is simply an 8-bit counter. Given this, it is obviously more effective to reuse an
existing counter, either as a piece of hardware or as a SystemVerilog model. It is
therefore convenient to think of a sequential system in terms of the datapath, that is,
those components that have been previously designed (or that can be easily adapted)
and that can be reused, and the controller, which is a design-specific state machine.
A model of a system partitioned in this way is shown in Figure 7.6.

Controller Datapath

System
Inputs

System
Outputs

Control Signals

Status Signals

Clock, Reset

Figure 7.6 Controller/datapath partitioning.

148 Complex Sequential Systems

Z ← 1

(a)

2D

C2

1
1
G1

ENABLE

1

(b)

G1

2D
1C2

ENABLE

1

Z

Z

(c)

ENABLE

(d)

Figure 7.7 Extended ASM chart notation.

Returning to the example of Figure 7.3, it can be seen that the left-hand state
machine corresponds to a controller, while the right-hand state machine, the counter,
corresponds to the datapath. The TIMED signal is a status signal, as shown in
Figure 7.6, while the ENABLE signal is a control signal. We look at a more significant
example of datapath/controller partitioning in Section 7.4.

The datapath would normally contain registers. As the functionality of the
system is mainly contained in the datapath, the system can be described in terms
of register transfer operations. These register transfer operations can be described
using an extension of ASM chart notation. In the simplest case, a registered output
can be indicated, as shown in Figure 7.7(a). This notation means that Z takes the
value 1 at the end of the state indicated, and holds that value until it is reset. If, in this
example, Z is reset to 0 and it is only set to 1 in the state shown, the registered output
would be implemented as a flip-flop and multiplexer, as shown in Figure 7.7(b), or
simply as an enabled flip-flop as shown in Figure 7.7(c). In either implementation,
the ENABLE signal is only asserted when the ASM is in the indicated state. Thus,
the ASM chart could equally include the ENABLE signal, as shown in Figure 7.7(d).

A more complex example is shown in Figure 7.8. In state 00, three registers,
B0, B1, and B2, are loaded with inputs X0, X1, and X2, respectively. Input A then
determines whether a shift left, or multiply by 2, is performed (A = 0) or a shift
right, or divide by 2 (A = 1) in the next state. If a divide by 2 is performed, the
value of the least significant bit is tested, so as always to round up. From the ASM
chart we can derive next state equations for the controller, either formally or by
inspection:

S+
0 = S̄0 · S̄1 · (Ā + X̄0)

S+
1 = S̄0 · S̄1 · A

7.2 Datapath/Controller Partitioning 149

A

X0

00

B0 ← X0
B1 ← X1
B2 ← X2

B0 ← 0
B1 ← B0
B2 ← B1

B0 ← B1
B1 ← B2
B2 ← 0

B0 ← B0 ⊕ B1
B1 ← B1 ⊕ B2
B2 ← B2 ⋅B1⋅B0

01 10 11

0 1

1 0

Figure 7.8 ASM chart of a partitioned design.

The datapath part of the design can be implemented using registers for B0,
B1, and B2 and multiplexers, controlled by S0 and S1, to select the inputs to the
registers, as shown in Figure 7.9. It is also possible to implement the input logic
using standard gates and thus to simplify the logic slightly.

MUX0
1

2

3

S1 S0

S1 S0

S1 S0

MUX0
1

2

3

MUX0
1

2

3

B2

B1

B0

X2

X1

X0

&

= 1

= 1

0

0

D Q

D Q

D Q

Clock

Figure 7.9 Implementation of a datapath.

150 Complex Sequential Systems

7.3 Instructions
Before looking at how a very simple microprocessor can be constructed, we exam-
ine the interface between hardware and software. This is not a course on computer
architecture—many such books exist—so the concepts presented here are deliber-
ately simplified.

When a computer program, written in, say, C, is compiled, the complex ex-
pressions of the high-level language can be broken down into a sequence of simple
assembler instructions. These assembler instructions can then be directly translated
into machine code instructions. These machine code instructions are sets of, say, 8,
16, or 32 bits. It is the interpretation of these bits that is of interest here.

Let us compile the expression

a = b + c;

to a sequence of assembly code instructions:

LOAD b
ADD c
STORE a

The exact interpretation of these assembler instructions is explained in the
next section. If the microprocessor has 8 bits, the opcode (LOAD, STORE, etc.) might
require 3 bits, while the operand (a, b, etc.) would take 5 bits. This allows for 8
opcodes and 32 addresses (this is a very basic microprocessor). Hence, we might
find that the instructions translate as follows.

LOAD b 00000001
ADD c 01000010
STORE a 00100011

that is, LOAD, ADD, and STORE translate to 000, 010, and 001, respectively, while a,
b, and c are data at addresses 00011, 00001, and 00010, respectively.

Within the microprocessor there is the datapath/controller partition described
in the previous section. The controller (often known as a sequencer in this context) is
a state machine. In the simplest case, the bits of the opcode part of the instruction are
inputs to the controller, in the same way that Aand X0 are inputs to the controller of
Figure 7.8. Alternatively, the opcode may be decoded (using a decoder implemented
in ROM) to generate a larger set of inputs to the controller. The decoder pattern
stored in the ROM is known as microcode.

The instructions shown previously consist of an opcode and an address. The
data to be operated upon must be subsequently obtained from the memory addresses

7.4 A Simple Microprocessor 151

given in the instruction. This is known as direct addressing. Other addressing modes
are possible. Suppose we wish to compile:

a = b + 5;

This translates to:

LOAD b
ADD 5
STORE a

How do we know that the 5 in the ADD instruction means the value “5” and
not the data stored at address 5? In assembler language, we would normally use a
special notation, for example, “ADD #5,” where the “#” indicates to the assembler
that the following value is to be interpreted as a value and not as an address. This
form of addressing is known as immediate mode addressing.

When the microprocessor executes an immediate mode instruction, different
parts of the datapath are used compared with those activated by a direct mode
instruction. Hence, the controller goes through a different sequence of states, and
thus the opcodes for an immediate mode ADD and a direct mode ADD must be
different. In other words, from the point of view of the microprocessor, instructions
with different addressing modes are treated as totally distinct instructions and have
different opcodes.

7.4 A Simple Microprocessor
Using the idea of partitioning a design into a controller and datapath, we now
show how a very basic microprocessor can be designed. We want to be able to
execute simple direct mode instructions such as those described in the previous
section. Let us first consider the components of the datapath that we need. In
order to simplify the routing of data around the microprocessor, we assume the
existence of a single bus. More advanced designs would have two or three buses,
but one bus is sufficient for our needs. For simplicity, we assume that the bus and
all the datapath components are 8 bits wide, although we make the SystemVerilog
model, in the next section, parameterizable. Because the single bus may be driven
by a number of different components, each of those components will use three-
state buffers to ensure that only one component is attempting to put valid data
on the bus at a time. We keep the design fully synchronous, with a single clock
driving all sequential blocks. We also include a single asynchronous reset to ini-
tialize all sequential blocks. A block diagram of the microprocessor is shown in
Figure 7.10.

152 Complex Sequential Systems

PC IR

RMA

Sequencer

MDR MAR
ACC

ALU

Control Signals

Flags

Figure 7.10 Datapath of a central processing unit (CPU).

The program to be executed by the microprocessor will be held in memory
together with any data. Memory, such as SRAM, is commonly asynchronous; there-
fore, synchronous registers will be included as buffers between the memory and the
bus for both the address and data signals. These registers are the memory address
register (MAR) and memory data register (MDR).

The arithmetic and logic unit (ALU) performs the arithmetic operations (e.g.,
ADD). The ALU is a combinational block. The result of an arithmetic operation is
held in a register, called the accumulator (ACC). The inputs to the ALU are the bus
and the ACC. The ALU may also have further outputs, or flags, to indicate that the
result in the ACC has a particular characteristic, such as being negative. These flags
act as inputs to the sequencer.

The various instructions of a program are held sequentially in memory. There-
fore, the address of the next instruction to be executed needs to be stored. This is
done using the program counter (PC), which also includes the necessary logic to
automatically increment the address held in the PC. If a branch is executed, the
program executes out of sequence, so it must also be possible to load a new address
into the PC.

Finally, an instruction taken from the memory needs to be stored and acted
upon. The instruction register (IR) holds the current instruction. The bits corre-
sponding to the opcode are inputs to the sequencer, which is the state machine
controlling the overall functioning of the microprocessor.

The sequencer generates a number of control signals. These determine which
components can write to the bus, which registers are loaded from the bus, and
which ALU operations are performed. The control signals for this microprocessor
are listed in Table 7.1.

7.4 A Simple Microprocessor 153

Table 7.1 Control Signals of a Microprocessor

ACC bus Drive bus with contents of ACC (enable three-state output)
load ACC Load ACC from bus
PC bus Drive bus with contents of PC
load IR Load IR from bus
load MAR Load MAR from bus
MDR bus Drive bus with contents of MDR
load MDR Load MDR from bus
ALU ACC Load ACC with result from ALU
INC PC Increment PC and save the result in PC
Addr bus Drive bus with operand part of instruction held in IR
CS Chip select

Use contents of MAR to set up memory address
R NW Read, not write

When false, contents of MDR are stored in memory
ALU add Perform an add operation in the ALU
ALU sub Perform a subtract operation in the ALU

Figure 7.11 shows the ASM chart of the microprocessor sequencer. Six clock
cycles are required to complete each instruction. The execution cycle can be divided
into two parts: the fetch phase and the execute phase. In the first state of the fetch
phase, s0, the contents of the PC are loaded, via the bus, into MAR. At the same time
the address in the PC is incremented by 1. In state s1, the CS and R NW signals
are both asserted to read into MDR the contents of the memory at the address
given by MAR. In state s2, the contents of MDR are transferred to the IR via
the bus.

In the execute phase, the instruction, now held in the IR, is interpreted and
executed. In state s3, the address part of the instruction, the operand, is copied
back to the MAR, in anticipation of using it to load or store further data. If the
opcode held in the IR is STORE, control passes through s4 and s5, in which the
contents of ACC are transferred to the MDR, then to be written into memory (at the
address previously stored in the MAR) when CS is asserted. If the opcode is not
STORE, CS and R NW are asserted in state s6, to read data from memory into the
MDR. If the opcode is LOAD, the contents of the MDR are transferred to the ACC
in state s7; otherwise, an arithmetic operation is performed by the ALU using the
data in the ACC and in the MDR in state s8. The results of this operation are stored
in the ACC.

154 Complex Sequential Systems

MAR ← PC
PC ← PC + 1

CS
R_NW

IR ← MDR

MAR ← Addr

op = store

s0

s1

s2

s3

s4

s5

s6

s7 s8

MDR ← ACC

CS

CS
R_NW

op = load

ACC ← MDR

op = add

ACC ← MDR

1 0

1 0

1 0
Fe

tc
h

E
xe

cu
te

+ ACC
ACC ← MDR

– ACC

Figure 7.11 ASM chart of a microprocessor.

The ASM chart of Figure 7.11 shows register transfer operations. In Figure 7.12,
the ASM chart instead shows the control signals that are asserted in each state. Either
form is valid, although that of Figure 7.11 is more abstract.

This processor does not include branching. Hence, it is of little use for running
programs. Let us extend the microprocessor to include a branch if the result of
an arithmetic operation (stored in the ACC) is not zero (BNE)1. The ALU has a

1. Branch if not equal to zero.

7.4 A Simple Microprocessor 155

PC_bus
Load_MAR

INC_PC

CS
R_NW

MDR_bus
load_IR

Addr_bus
load_MAR

op = store

s0

s1

s2

s3

s4

s5

s6

s7 s8

ACC_bus
load_MDR

CS

CS
R_NW

op = load

MDR_bus
load_ACC

MDR_bus
ALU_ACC

op = add

ALU_add ALU_sub

1 0

1 0

1 0
Fe

tc
h

E
xe

cu
te

Figure 7.12 Alternative form of the microprocessor ASM chart.

zero flag, which is true if the result it calculates is zero and which is an input to
the sequencer. Here, we shall implement this branch instruction in a somewhat
unusual manner. All the instructions in this example are direct mode instructions.
To implement immediate mode instructions would require significant alteration of
the ASM chart. Therefore, we implement a “direct mode branch.” The operand
of a BNE instruction is not the address to which the microprocessor will branch
(if the zero flag is true), but the address at which this destination address is stored.

156 Complex Sequential Systems

op = bne

s6

s7

s8

CS
R_NW

op = load

ACC ← MDR

op = add

ACC ← MDR

0

1 0

1 0s9
PC ← MDR

z_flag
0

1

1

s10

+ ACC
ACC ← MDR

– ACC

Figure 7.13 Modification of the ASM chart to include branching.

Figure 7.13 shows how the lower right corner of the ASM chart can be modified
to include this branch. An additional control signal has to be included: load PC, to
load the PC from the bus.

7.5 SystemVerilog Model of a Simple Microprocessor
The following SystemVerilog modules model the microprocessor described in the
previous section. The entire model, including a basic testbench, runs to around
320 lines of code. The model is synthesizable and so could be implemented on an
FPGA.

The first file, cpu defs.v, is a set of definitions contained in a package. The
definitions are public and may be used in any unit that uses an import statement.
The opcodes are defined by bit patterns. The size of the bus and the number of bits
in the opcode are defined by parameters. The use of this file means that the size of
the CPU and the actual opcodes can be changed without altering any other part of
the model. This is important to maintain the modularity of the design.

package cpu_defs;

parameter WORD_W = 8;
parameter OP_W = 3;

7.5 SystemVerilog Model of a Simple Microprocessor 157

enum logic[2:0] {LOAD=3’b000,
STORE=3’b001,
ADD=3’b010,
SUB=3’b011,
BNE=3’b100} opcodes;

endpackage

The modules share a common bus and are linked by a number of control signals.
In this example, we gather together all these signals into an interface. While this
is not really necessary for a design of this size, it illustrates a useful construct, with
little extra code. The basic idea is that an interface is instantiated in the same way
as any other module. The signals that pass between modules are declared in the
interface. The particular signals connecting to a specific module are declared in a
named modport. As we will see in the following, this name is used within each of
the modules. In this example, the clock, reset, and main system bus are declared as
external signals to the interface. This is done because the clock and reset signals are
generated externally, and if the bus were totally internal—in other words, if there
were no outputs from the system—a synthesis tool would conclude that the system
could be optimized away to nothing!

import cpu_defs::*;

interface CPU_bus (input logic clock, n_reset,
inout wire [WORD_W-1:0] sysbus);

logic ACC_bus, load_ACC, PC_bus, load_PC, load_IR,
load_MAR, MDR_bus, load_MDR, ALU_ACC, ALU_add,
ALU_sub, INC_PC, Addr_bus, CS, R_NW, z_flag;

logic [OP_W-1:0] op;

modport IR_port(input clock, n_reset, Addr_bus,
load_IR,

inout sysbus,
output op);

modport RAM_port (input clock, n_reset, MDR_bus,
load_MDR, load_MAR, CS, R_NW,

inout sysbus);

modport ALU_port (input clock, n_reset, ACC_bus,
load_ACC, ALU_ACC, ALU_add, ALU_sub,

inout sysbus,
output z_flag);

158 Complex Sequential Systems

modport PC_port (input clock, n_reset, PC_bus, load_PC,
INC_PC,

inout sysbus);

modport seq_port (input clock, n_reset, z_flag,
input op,
output ACC_bus, load_ACC, PC_bus,

load_PC, load_IR, load_MAR,
MDR_bus, load_MDR, ALU_ACC,
ALU_add, ALU_sub, INC_PC,
Addr_bus, CS, R_NW);

endinterface

The controller or sequencer is described by the ASM chart in Figures 7.12
and 7.13. The SystemVerilog description therefore also takes the form of a state
machine. The inputs to the state machine are the clock, reset, an opcode, and the
zero flag from the accumulator. The outputs are the control signals of Table 7.1.
All of these signals are routed through the interface. The modport from
the interface is referenced in the module header. Thus, bus is declared to
be of type CPU_bus.seq_port. All external signals coming through this inter-
face are prefixed with bus. The advantage of the interface can now be seen.
If a control signal is changed, the change is made in the interface declaration
and in the module bodies concerned—we don’t have to worry about changing
the module headers. Notice that a two-block model is used. Notice, too, that
all the output signals are given a default value at the start of the next state
and output logic block. At the end of the case statement in the combinational
block, a default statement assigns x values to the state variable. This will be
treated as don’t care values in synthesis, and would highlight any error during
simulation.

import cpu_defs::*;

module sequencer (CPU_bus.seq_port bus);

enum {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}
state;

always_ff @(posedge bus.clock, negedge bus.n_reset)
begin: seq
if (!bus.n_reset)

state <= s0;
else

7.5 SystemVerilog Model of a Simple Microprocessor 159

case (state)
s0: state <= s1;
s1: state <= s2;
s2: state <= s3;
s3: if (bus.op == STORE)

state <= s4;
else

state <= s6;
s4: state <= s5;
s5: state <= s0;
s6: if (bus.op == LOAD)

state <= s7;
else if (bus.op == BNE)

if (˜bus.z_flag)
state <= s9;

else
state <= s10;

else
state <= s8;

s7: state <= s0;
s8: state <= s0;
s9: state <= s0;
s10: state <= s0;

endcase
end

always_comb
begin: com
// reset all the control signals to default
bus.ACC_bus = ’0;
bus.load_ACC = ’0;
bus.PC_bus = ’0;
bus.load_PC = ’0;
bus.load_IR = ’0;
bus.load_MAR = ’0;
bus.MDR_bus = ’0;
bus.load_MDR = ’0;
bus.ALU_ACC = ’0;
bus.ALU_add = ’0;
bus.ALU_sub = ’0;
bus.INC_PC = ’0;
bus.Addr_bus = ’0;
bus.CS = ’0;
bus.R_NW = ’0;
case (state)

s0: begin

160 Complex Sequential Systems

bus.PC_bus = ’1;
bus.load_MAR = ’1;
bus.INC_PC = ’1;
bus.load_PC = ’1;
end

s1: begin
bus.CS = ’1;
bus.R_NW = ’1;
end

s2: begin
bus.MDR_bus = ’1;
bus.load_IR = ’1;
end

s3: begin
bus.Addr_bus = ’1;
bus.load_MAR = ’1;
end

s4: begin
bus.ACC_bus = ’1;
bus.load_MDR = ’1;
end

s5: begin
bus.CS = ’1;
end

s6: begin
bus.CS = ’1;
bus.R_NW = ’1;

end
s7: begin

bus.MDR_bus = ’1;
bus.load_ACC = ’1;
end

s8: begin
bus.MDR_bus = ’1;
bus.ALU_ACC = ’1;
bus.load_ACC = ’1;
if (bus.op == ADD)

bus.ALU_add = ’1;
else if (bus.op == SUB)

bus.ALU_sub = ’1;
end

s9: begin
bus.MDR_bus = ’1;
bus.load_PC = ’1;
end

s10: ;

7.5 SystemVerilog Model of a Simple Microprocessor 161

endcase
end

endmodule

The datapath side of the design, as shown in Figure 7.10, has been described
in four parts. Each of these parts is similar to the type of sequential building block
described in Chapter 5. The system bus is described as a bidirectional port in each of
the following four modules. An assignment sets a high impedance state onto the bus
unless the appropriate output enable signal is set. Notice the use of the replication
operator. The first module models the ALU and the ACC.

import cpu_defs::*;

module ALU (CPU_bus.ALU_port bus);

logic [WORD_W-1:0] acc;

assign bus.sysbus = bus.ACC_bus ? acc : ’z;
assign bus.z_flag = acc == 0 ? ’1 : ’0;

always_ff @(posedge bus.clock, negedge bus.n_reset)
begin
if (!bus.n_reset)

acc <= 0;
else

if (bus.load_ACC)
if (bus.ALU_ACC)

begin
if (bus.ALU_add)

acc <= acc + bus.sysbus;
else if (bus.ALU_sub)

acc <= acc - bus.sysbus;
end

else
acc <= bus.sysbus;

end
endmodule

The program counter is similar in structure to the ALU and the ACC. Notice
the use of replication and concatenation to set the most significant bits on the
system bus.

import cpu_defs::*;

module PC (CPU_bus.PC_port bus);

logic [WORD_W-OP_W-1:0] count;

162 Complex Sequential Systems

assign bus.sysbus = bus.PC_bus ?
{{OP_W{1’b0}},count} : ’z;

always_ff @(posedge bus.clock, negedge bus.n_reset)
begin
if (!bus.n_reset)

count <= 0;
else

if (bus.load_PC)
if (bus.INC_PC)

count <= count + 1;
else

count <= bus.sysbus;
end

endmodule

The instruction register is basically an enabled register.

import cpu_defs::*;

module IR (CPU_bus.IR_port bus);

logic [WORD_W-1:0] instr_reg;

assign bus.sysbus = bus.Addr_bus ?
{{OP_W{1’b0}},instr_reg[WORD_W-OP_W-1:0]} :
’z;

always_comb
bus.op = instr_reg[WORD_W-1:WORD_W-OP_W];

always_ff @(posedge bus.clock, negedge bus.n_reset)
begin
if (!bus.n_reset)

instr_reg <= 0;
else

if (bus.load_IR)
instr_reg <= bus.sysbus;

end
endmodule

The memory module is, again, very similar to the static RAM in Chapter 5.
A short program has been loaded in the RAM. In order to make the model pa-
rameterizable, the “program” has been written as an opcode followed by some 0s
followed by an address. Because we know the size of the address (3 bits in each
case), we can set the number of zeros by replication. The replication operator is

7.5 SystemVerilog Model of a Simple Microprocessor 163

written as {N{1’b0}} to specify, for example, N instances of a single 0. Because
the replication number is an expression, it is written in parentheses.

import cpu_defs::*;

module RAM (CPU_bus.RAM_port bus);

logic [WORD_W-1:0] mdr;
logic [WORD_W-OP_W-1:0] mar;
logic [WORD_W-1:0] mem [0:(1<<(WORD_W-OP_W))-1];
int i;

assign bus.sysbus = bus.MDR_bus ? mdr : ’z;

always_ff @(posedge bus.clock, negedge bus.n_reset)
begin
if (!bus.n_reset)

begin
mdr <= 0;
mar <= 0;
mem[0] <= {LOAD, {(WORD_W-OP_W-3){1’b0}},3’d4};
mem[1] <= {ADD, {(WORD_W-OP_W-3){1’b0}},3’d5};
mem[2] <= {STORE,{(WORD_W-OP_W-3){1’b0}},3’d6};
mem[3] <= {BNE, {(WORD_W-OP_W-3){1’b0}},3’d7};
mem[4] <= 2;
mem[5] <= 2;
mem[6] <= 0;
mem[7] <= 0;
for (i = 8; i < (1<<(WORD_W-OP_W)); i+=1)
mem[i] <= 0;

end
else

if (bus.load_MAR)
mar <= bus.sysbus[WORD_W-OP_W-1:0];

else if (bus.load_MDR)
mdr <= bus.sysbus;

else if (bus.CS)
if (bus.R_NW)

mdr <= mem[mar];
else

mem[mar] <= mdr;
end

endmodule

The various parts of the microprocessor can now be pulled together by instanti-
ating them. Here, we use the SystemVerilog default style of argument passing. In this

164 Complex Sequential Systems

style, we assume that arguments have the same internal and external names, and
this allows us to simply write (.*).

import cpu_defs::*;

module CPU (input logic clock, n_reset,
inout wire [WORD_W-1:0] sysbus);

CPU_bus bus (.*);

sequencer s1 (.*);

IR i1 (.*);

PC p1 (.*);

ALU a1 (.*);

RAM r1 (.*);

endmodule

The following piece of Verilog generates a clock and reset signal to allow the
program defined in the RAM module to be executed. Obviously, this testbench
would not be synthesized.

import cpu_defs::*;

module TestCPU;

logic clock, n_reset;
wire [WORD_W-1:0] sysbus;

CPU c1 (.*);

always
begin

#10ns clock = 1’b1;
#10ns clock = 1’b0;
end

initial
begin
n_reset = 1’b1;
#1ns n_reset = 1’b0;
#2ns n_reset = 1’b1;
end

endmodule

Exercises 165

Summary
In this chapter we looked at linked ASM charts and splitting a design between a
controller, which is designed using formal sequential design methods, and a datapath
that consists of standard building blocks. The example of a simple CPU has been
used to illustrate this partitioning. The SystemVerilog model can be both simulated
and synthesized.

Further Reading
Formal techniques exist for partitioning state machines. These are described in
Unger [23]. The controller/datapath model is used in a number of high-level syn-
thesis tools; see, for example, de Micheli [6]. The CPU model is based on an example
in Maccabe [13].

Exercises
7.1 Any synchronous sequential system can be described by a single ASM chart.

Why then might it be desirable to partition a design? Describe a general
partitioning scheme.

7.2 A counter is to be used as a delay for a simple controller, to generate a ready
signal, 10 clock cycles after a start signal has been asserted. Show how the
interaction between the controller and the counter can be represented in ASM
chart notation.

7.3 A microprocessor has a number of addressing modes. Describe the immediate
and direct addressing modes.

7.4 What structures are needed in a microprocessor to implement a “branch if
negative” instruction? Describe the register transfer operations that would
occur in the execution of such an instruction and show the sequence of events
on a timing diagram.

7.5 The ASM chart of Figures 7.11 and 7.13 implements a branch instruction
with a direct mode operand. Modify the ASM chart to show how the
microprocessor could branch to an address given by an immediate mode
operand.

7.6 Modify the SystemVerilog model of the microprocessor to implement an
immediate mode “branch if not equal to zero.”

This page intentionally left blank

8Writing Testbenches

Writing a synthesizable model of a piece of hardware is only half (or perhaps
less than half) of the design problem. It is essential to know that the model does the
task for which it is intended. It would, of course, be possible to do this the hard
way—by synthesizing the hardware and testing the design in the final context in
which it is to be used. This could be a very expensive and dangerous approach.

The alternative is to verify the hardware before synthesis. In practice, this means
that the hardware has to be simulated. In order to simulate a SystemVerilog model,
stimuli have to be applied to the model and the responses of the model have to
be analyzed. For portability and to avoid having to learn a new set of language
constructs, the stimuli and response analysis routines are written in SystemVerilog.
It is tempting to argue that with FPGAs, it can be as fast to make changes to
the hardware as it is to simulate. There is some truth to this, inasmuch as the
quality of the verification cannot be truly known until the actual hardware is
tested, but simulation should always be used to check any changes before synthesis
is done.

We use the term testbench to describe a piece of SystemVerilog written to verify
a synthesizable model. There are two basic features of a testbench that distinguish
it from a synthesizable model. First, a testbench has no inputs or outputs; it is the
entire world as far as the model is concerned. In a simulation, we can have ac-
cess to every part of a model; therefore, this lack of input and outputs does not
restrict us in any way. Second, because a testbench is never synthesized, we can

167

168 Writing Testbenches

use the entire SystemVerilog language. This freedom to use the entire language can
present its own difficulties. By sticking to an agreed upon subset of SystemVerilog
it is straightforward to write portable, synthesizable hardware models. Because of
the definition of the SystemVerilog simulation cycle (see Chapter 9), it cannot be
guaranteed that an arbitrary piece of SystemVerilog code will execute in exactly
the same way on two simulators. Therefore, it is very easy to write testbenches
that behave differently, and that give different simulation results, on different
simulators.

We already introduced several examples of testbenches in earlier chapters. We
start here by recapping the examples from earlier chapters. Just as synthesizable
models should be written in a modular manner to allow reuse, testbenches should
also be written as modules as will be shown. The final two sections of this chapter
discuss constrained random test generation and assertion-based verification. Both
of these concepts have a considerable amount of new programming constructs
associated with them, so only some introductory examples will be given.

8.1 Basic Testbenches
In Chapter 3, a basic testbench for a two-input AND gate was given.

module TestAnd2;

wire a,b,c;

And2 g1 (c, a, b);

initial
begin
a = ’0;
b = ’0;
#100ps a = ’1;
#50ps b = ’1;
end

endmodule

The testbench has an initial procedure containing a sequence of assignments
to a and b. The initial keyword does not mean that the procedure initializes
signals, but rather that the procedure is only executed once. Notice that the delay
value is a relative delay and appears on the left side of a blocking assignment. This
style is suitable for testbenches, but should not be used for modeling synthesizable
hardware.

8.1 Basic Testbenches 169

8.1.1 Clock Generation
The most important signal in any sequential design is the clock. In the simplest case,
a clock can be generated by inverting its value at a regular interval.

The default value of any variable or net is X. Simply inverting a signal at a
regular interval will invert the X value. Therefore, the signal has to be initialized.
An example of this was first given in Chapter 5.

initial
begin
clock = ’0;
forever #10ps clock = ˜clock;
end

8.1.2 Reset and Other Deterministic Signals
Also in Chapter 5, there was an example of a reset:

initial
begin

n_reset = ’1;
#1ns n_reset = ’0;
#1ns n_reset = ’1;
end

We also showed how other non-repeating stimuli could be generated in a similar
way. In Chapter 6, there were examples showing how inputs can be synchronized
to a clock signal.

8.1.3 Monitoring Responses
While it is possible to determine whether a simple design is correct by observing the
waveforms generated by a simulator, this approach soon becomes impractical for
large designs simulated over thousands of clock cycles. In Chapter 5, the system calls
$write, $display, $monitor, and $strobe were introduced. So, for example,
the state of a variable at the end of the simulation cycle at a given time can be written
using a command like:

$strobe("%t Counter has value %d", $time, count);

8.1.4 Dumping Responses
The results of a simulation can be “dumped” to a file for later analysis or for display
in a waveform viewer. (But note that this is not usually necessary if the viewer is

170 Writing Testbenches

built into the simulator.) The name of the file is specified using the $dumpfile

system call and the variables of the system saved using the $dumpvars call. So, for
example, we could write:

initial
begin
$dumpfile("results.vcd");
$dumpvars;
end

$dumpvars saves all variables in this case, but arguments can be used to specify
a subset to save.

8.1.5 Test Vectors from a File
It is sometimes convenient to keep a set of test vectors in a separate text file. For
example, suppose that the following set of inputs were to be applied to a device.

0000
0010
1001
0101
1111

If these vectors are stored in a text file vectors.txt, they could be read into an
array and applied to a device under test as shown in the following code fragment.

logic [3:0] test_vector [0:4];
logic [3:0] a;

initial
begin
$readmemb("vectors.txt", test_vector);
for (int i = 0; i <= 4; i++)

a = test_vector[i];
end

The variable a would be the input to the device under test.

8.2 Testbench Structure
In the examples seen thus far, the structure of the testbench is that of the first
example of this chapter. The testbench consists of a single module, within which the
circuit under test (CUT)—or, more accurately, device under verification (DUV)—is
instantiated. The stimulus generation and response checking is contained within
that testbench in a number of procedures. This structure is fine, if you only want to

8.2 Testbench Structure 171

Testbench

Stimulus
Device Under
Verification

Verify
Response

Figure 8.1 Modular testbench structure.

run one simulation or if the parts of the testbench will be used only once. If multiple
simulations are needed to test different parts of a design, it makes sense to adopt a
modular structure.

The basic idea is illustrated in Figure 8.1. The stimulus and verification sections
are instantiated within separate units, just like the DUV. The clock and reset are
special cases and are generated separately, either within the top-level testbench or
in a separate module.

As an example, to illustrate the concepts in the rest of this chapter, let us
consider the sequential Booth multiplier of Section 5.7. The multiplier takes two
twos-complement numbers and calculates the product after a certain number of
clock cycles. It is not required that the multiplier and the multiplicand have the
same number of bits, so as well as verifying that the circuit gives the correct answer,
we would also like to know that it generates the correct answer after the correct
number of cycles for inputs of different bit widths. This suggests that more than
one testbench may be required. It is, therefore, common to speak of more than one
testcase, rather than of a single testbench.

The top-level testbench, corresponding to the structure of Figure 8.1, follows.
The testbench simply declares parameters and signals, and the four units corre-
sponding to the clock generator, stimulus generator, device under verification, and
response verifier are instantiated.

module testbooth;

parameter N = 16;

logic signed [N-1:0] ain, bin;
logic signed [2*N-1:0] qout;
logic clk, load, n_reset;
logic ready;

clock_gen #(10.0, 10.0) c0 (.*);
stimulus s0 (.*);

172 Writing Testbenches

booth #(N, N, 2*N) b0 (.*);
verify v0 (.*);

endmodule

The clock (and reset) generator can be parameterized to make it usable as a
general block in any testbench. Notice that this is very similar to the asymmetric
clock given in Chapter 5 and so will not be explained further here.

module clock_gen #(parameter ClockFreq_MHz = 100.0,
ResetWidth=10.0)

(output logic clk, n_reset);
timeunit 1ns;
timeprecision 100ps;

parameter ClockHigh = (500.0)/ClockFreq_MHz;

initial
begin

n_reset = ’1;
clk = ’0;

#ResetWidth n_reset = ’0;
#ResetWidth n_reset = ’1;
forever #ClockHigh clk = ˜clk;
end

endmodule

8.2.1 Programs
In all the design examples given in previous chapters, sequential logic (inalways_ff
procedures) is always modeled using nonblocking assignments (<=); combinational
logic (in always_comb procedures) is always modeled using blocking assignments
(=). The reason for this will be explained in full in Chapter 9, but it is sufficient to note
for the moment that this convention ensures that, at a clock edge, all combinational
logic is updated before any flip-flop outputs change, and signal changes do not
ripple through multiple flip-flops on one clock edge.

A similar problem can arise in a testbench. Signals assigned using blocking
assignments would happen at the same time as combinational logic and, worse,
can happen in any order or can be interleaved with combinational logic changes.
Nonblocking assignments with delays can suffer from the same problems. It would
be preferable to move all assignments in testbenches into a separate grouping. The
program block does this. Again, the mechanism is described in Chapter 9.

8.2 Testbench Structure 173

A program block can contain type, variable, and subprogram declarations,
together with one or more initial blocks. It cannot contain any always blocks
(or the RTL variants), nor any other block instantiations. Thus, a program is very
much like a conventional software program—it executes one or more threads and
then terminates.

A simple program block to generate a stimulus for the multiplier is given in the
following. The two inputs, ain and bin, are assigned values after the reset phase
and then load is asserted for one clock edge.

program stimulus #(parameter NA = 16, NB = 16)
(output logic signed [NA-1:0] ain,
output logic signed [NB-1:0] bin,
output logic load);

initial
begin
#30ns ain = -10;

bin = 10;
#10ns load = ’1;
#10ns load = ’0;
end

endprogram

Of course, it would be preferable to parameterize the timing of this block. This
is left as an exercise.

It is now relatively easy to build up a collection of test cases, in which dif-
ferent stimulus blocks are instantiated within different top-level modules. For a
larger example, different stimulus blocks can be combined in different ways to cre-
ate different tests. Alternatively, generic stimulus blocks can be created, for which
particular test cases can be created using different top-level modules.

A few further points should be made about program blocks. First, it is possible
to generate inputs from multiple program blocks. As with hardware, a variable or
net should not be assigned values from two or more programs, or contention may
arise. Second, it is also possible to call the same program more than once (just like
a real subroutine), but with different parameters. By default, a program—or any
SystemVerilog block—has static storage. Multiple uses of the same program will
confuse matters. It is therefore desirable to declare programs with the automatic
keyword:

program automatic stimulus (...);

Finally, the clock generator was declared using a module, not a program.
The clock is different from other inputs (as is a power-on, asynchronous reset).

174 Writing Testbenches

There is sense in asserting it at the same time as any combinational logic because it
has no effect on that logic and because it needs to be asserted before any nonblock-
ing assignments in the flip-flops. In effect, think of the clock generator as a piece of
hardware.

8.3 Constrained Random Stimulus Generation
One of the greatest difficulties in writing testbenches is knowing what stimuli to
apply. One approach is to use the “corner” cases. For example, to test a multiplier,
combinations of 0, the largest positive number, and the largest negative number
might be applied. If the multiplier gives the correct answers for these values, it
ought to give correct answers for any number. To be on the safe side, we would
probably include some other random values. What do we mean by random? If we
had to choose some numbers “randomly,” we would probably chose values such
as 10 or 100, because the product is easy to check. So human-chosen values would
probably not really be random. Equally, we might consciously or otherwise choose
values that we would expect to see. Choosing random values automatically would
give us a wider range of data (that we might be too lazy to generate ourselves) and
might give us combinations that reveal something unexpected about our design.

Completely random data might, however, include absurd combinations. For
example, testing a microprocessor by randomly choosing both opcodes and data
might give situations that could never arise. Thus, constrained random test gen-
eration has attracted wide attention. SystemVerilog includes constructs to allow
constrained random test generation, but a full description of the topic would take
an entire book (see Further Reading). Here, we will give a brief introduction to the
topic.

8.3.1 Object-Oriented Programming
Object-oriented programming (OOP) is a software development methodology that,
at first sight, has little to do with an HDL such as SystemVerilog. In “conventional”
programming languages (C, FORTRAN), programs operate upon data structures.
Procedural blocks in SystemVerilog (initial, always) work in a very similar
manner. OOP turns this model inside out. Data structures and the functions that
operate on them are declared together (in classes) and programs are assembled by
instantiating these classes as objects. It is not easy to think of hardware in terms of
classes, although SystemC is a hardware description language, based upon C++, a
widely used OOP. It should, however, be noted that SystemC is best used for levels
of abstraction higher than RTL.

8.3 Constrained Random Stimulus Generation 175

SystemVerilog includes a number of OOP features that can be used for testbench
design. As with any programming language, it is possible to do the things described
here in different ways, but it is much easier to use these structures.

The basic OOP feature is the class. A very simple example of a class in Sys-
temVerilog is:

class Twobits;
bit a, b;

endclass

This is somewhat uninteresting! A better example includes one or more func-
tions (or methods in OOP terminology).

class Twobits;
bit a, b;

function implies;
implies = (˜a | b);

endfunction
endclass

The class has to be instantiated as an object and then allocated. Objects are
dynamic—they can be created and destroyed. This is one reason why they are not
a natural way to model hardware.

initial
begin
Twobits tb; // Declare a "handle"
tb = new(); // And allocate the memory
tb.a = ’0; // Assign a value to a
tb.b = ’1;
$display("a => b is %b", tb.implies());
end

Notice the use of the “dot” notation. tb.a means variable a inside object tb.
The same notation applies to any method declared inside the class. If more than
one object of a given class is declared (each with its own handle), each has to have
memory allocated with its own call to new.

A lot more can be done with classes: They can be nested and new classes can be
derived by inheriting the details of a base class. The way in which classes are used in
constrained random test generation is a little different from normal OOP practice,
however.

176 Writing Testbenches

8.3.2 Randomization
Instead of assigning values to variables in classes, we want random values to be
generated automatically. To do this, we declare the variables as rand or randc.
The difference is that rand variables can take any value at any time (subject to
constraints), whilerandc variables cycle through all possible values before repeating
any value.

Returning to the multiplier example, we can declare a class that contains two
variables:

class Mults;
rand logic signed [NA-1:0] ar;
rand logic signed [NB-1:0] br;

endclass

As with the earlier OOP example, the class has to be instantiated as an object
and allocated. The variables declared as rand are then randomized and assigned to
the output variables.

initial
begin
Mults m;
m = new();
m.randomize();
#30ns ain = m.ar;

bin = m.br;
#10ns load = ’1;
#10ns load = ’0;
end

As it stands, this example is not particularly interesting. Only one pair of random
values is generated and every simulation will be the same because the random
number generator is really only a pseudo-random number generator that uses the
same seed each time. (See Section 5.5.3 for another example of a pseudo-random
number generator.) We could create a test sequence of, say, 50 random pairs. Notice
that the procedure waits for the ready signal from the multiplier to become true
before trying to load a new value.

initial
begin
Mults m;
m = new();
repeat (50)
begin
m.randomize();
#30ns ain = m.ar;

8.3 Constrained Random Stimulus Generation 177

bin = m.br;
#10ns load = ’1;
#10ns load = ’0;
wait (ready);
end

end

This example chooses unconstrained random values for ar and br. These ran-
dom values can lie anywhere in the possible range. Clearly, checking the product
values will require some further calculations. Suppose, therefore, that we want to
limit the range of values such that we can check the answers in our heads. We can
apply a constraint to the values that can be generated. For example, the ranges
of ar and br could be limited to ±20.

class Mults;
rand logic signed [NA-1:0] ar;
rand logic signed [NB-1:0] br;
constraint c_range {ar > -20;

ar < 20;
br > -20;
br < 20;};

endclass

A more realistic example is based on the microprocessor of Chapter 7. Suppose
that we wish to test the microprocessor by using a sequence of random instructions,
with random addresses. In a real system, instructions and data are not normally
mixed up in the memory. So let us assume that the test will emulate a real system such
that the “program” is in the bottom half of the memory and the data is in the top half.
For simplicity, our microprocessor has five opcodes and has 8 bits for each operand.

We can declare the opcodes as an enumerated type.

typedef enum {LOAD, STORE, ADD, SUB, BNE} opcodes;

(Notice that this is not quite the same as the example in Chapter 7. Here,
opcodes is a type; in the previous example, it was a variable.) The opcode and
operand are declared as random variables in a class.

class Stimulus;
rand opcodes op;
rand logic [7:0] operand; // 0 to 255

endclass

We now need to write a constraint that says that if the opcode references part of
the program, the operand is in the lower half of the address space, but if the opcode
references data, the operand is in the upper half. The only opcode that references
another part of the program is the BNE—branch if not equal to zero to another part

178 Writing Testbenches

of the program. The other opcodes all reference data. The constraint is therefore
written to check the opcode and to constrain the operand accordingly.

constraint c_op {
if (op == BNE)

operand <= 127;
else

operand > 128;
}

The constraint is written, of course, as part of the class declaration. To use this
to verify the microprocessor model, that model would have to be restructured. The
stimulus generator would replace the RAM block. See Exercise 8.1.

There are several ways of expressing the constraint shown previously. For more
information, see the recommendations in the Further Reading section.

8.4 Assertion-Based Verification
In the testbench structure of Figure 8.1, the right-hand box is labeled “Verify
Response.” In verifying a response, it is implicit that we know what the correct
response should be. It is implicit in the discussion in earlier chapters that the func-
tionality of a circuit can be verified by inspecting the waveforms produced by a
simulation. It becomes clear very quickly that such an approach is inadequate. It is
not really practical to view hundreds of waveforms on a screen and to check that a
particular signal changes at exactly the right time, perhaps after thousands of clock
cycles and hundreds of input changes.

The $monitor or $display commands can be used to indicate in a textual
form what the response of the circuit should be, but ideally we want to know when
an output is not what we expect. It would be possible to tabulate a set of inputs and
outputs and to check each output, but for a sequential system, such as the multiplier
used to illustrate earlier sections of this chapter, the output might only be valid some
clock cycles after the input changes.

All this suggests that what we are really trying to achieve is a comparison be-
tween a hardware model and some more abstract model that can be written in a
more concise form. Of course, SystemVerilog has the program structures to allow
abstract models to be written. On the other hand, assertions have been introduced
into SystemVerilog to allow sequential behavior to be described in a more abstract
manner than standard RTL.

The idea of an assertion is very simple. We state that we believe that something
should be true, and if it is not true, an error message is printed. In SystemVerilog,

8.4 Assertion-Based Verification 179

assertions can take two forms: immediate and concurrent assertions. Immediate asser-
tions are very simple and could be easily written as if, else statements. Concurrent
assertions are much more powerful and will form the main part of this discussion.
As with other aspects of the language, there is insufficient space here to go into
every detail, and other sources of information are given in the Further Reading
section.

To illustrate how assertions can be written, we will use the vending machine
example from Chapter 6. We will also show how the outputs of the multiplier can
be verified. It may seem that some of the assertions given here are trivially obvious
from the code they are designed to verify. Ideally, verification should be performed
by a different engineer than the designer. Both should be working independently
from a specification. Also, bear in mind that assertions need to be debugged just as
much as RTL code, so verification is really the writing of two versions of the same
function and comparing them.

The vending machine has four outputs. From the ASM chart (this is the spec-
ification against which we are testing the RTL implementation), we can see, for
example, that dispense and ready are never true at the same time. This fact can
be stated as an immediate assertion in an always procedure. (This could be equiva-
lently written as an always_comb procedure, but to avoid confusion, we will only
use always_comb for synthesizable RTL code.)

always @*
assert (˜(dispense && ready))
else $error("dispense and ready both lit!");

This assertion is tested whenever dispense or ready changes. It would, how-
ever, be better to check that this condition is true at a clock edge because we are
dealing with a synchronous system. First we write the condition as a property.

property NotDispenseAndReady;
@(posedge clock) (˜(dispense && ready));

endproperty

This property is then tested as part of a concurrent assertion.

assert property (NotDispenseAndReady);

The property and the assertion can be combined, but as a general style guide,
it is better to keep them separate to allow properties to be reused.

In general, concurrent assertions are active over a period of time. Temporal
properties take two forms: implications and sequences. For example, if the vending
machine has just dispensed a ticket or has returned bills, the ready light is on.

180 Writing Testbenches

If a bill is inserted, we expect that in the next clock cycle, the bill light will be
lit, indicating that further bills have to be inserted. This can be expressed as a
property.

property Bill;
@(posedge clock) ready && (twenty || ten) |=> bill;

endproperty

The symbol |=> is a non-overlapping implication. In other words, the condition
on the left implies that in the next clock cycle, the condition on the right is expected
to become true. This property (and those that follow) can be used in assert

statements, as above.
Instead of putting the clock edge in every property, it is possible to define a

default clocking block. The @(posedge clock) clause can then be omitted from
properties and assertions.

default clocking clock_block
@(posedge clock);

endclocking

An overlapping implication is one in which the condition on the left implies that
the condition on the right is true in the same clock cycle. For example, if the vending
machine is waiting for a bill, it is not dispensing a ticket at the same time.

property BillNotDispense;
bill |-> !dispense;

endproperty

The implication operator means that the property fails if bill is true and dispense
is also true. The property passes if bill is true and dispense is false. The property also
passes if bill is false. This is known as a vacuous pass. In other words, the property
passes because it is never really tested. This is a potential source of false optimism.
Just because none of the assertions used to verify a design fail, it does not follow
that the design has been fully tested. Every assertion might have passed vacuously.

One way to check that the properties are fully tested is to use a cover statement.

cover property (BillNotDispense);

After a simulation, the number of times the property was checked will be re-
ported, together with the number of passes, the number of fails, and the number of
vacuous passes.

We often want to know whether a sequence of actions has been performed.1

For example, we might wish to check whether, after a sequence of the bill indicator

1. Sequences can also be written in separate blocks. We will not cover that aspect here.

8.4 Assertion-Based Verification 181

being lit and a ticket dispensed, the vending machine lights the ready indicator.
The symbol ## is used to indicate clock cycles (according to the clocking block
defined earlier). Thus, ##1 means one clock cycle.

property BillDispenseReady;
bill ##1 dispense |=> ready;

endproperty

It is also possible to specify a range of cycles; thus, ##[1:3] means “between
1 and 3 (inclusive) clock cycles.” This leads to an interesting, but potentially mis-
leading, use of sequences.

If the vending machine is waiting with its ready light lit and a $20 bill is inserted,
we might expect that eventually a ticket will be dispensed. We do not know how
many cycles this might take, because two $10 bills or one $20 bill might be inserted.
It is, however, possible for a (confused) user to insert a $10 bill followed by a $20
bill. This would result in all the bills being returned. There would be nothing to
stop the user from repeating this sequence ($20, $10, $20), but we might reasonably
assume that eventually the user would learn! So this can be stated as a property.

property Eventually;
ready && twenty |-> ##[1:$] dispense;

endproperty

##[1:$] means between one and infinity clock cycles later. This is known as
a liveness property. In general, liveness properties should be avoided. “Eventually”
can be a very long time and therefore might never fail. The property can also pass
vacuously, so in practice, this property tells us nothing, while appearing to say a lot.

The assertions described thus far have been expressed in terms of input and
output signals. It is also possible to use internal signals, including states. This,
however, implies that either the signals must be made visible—by making them
into ports—or the properties and assertions should be included in the modules
themselves and not in the testbenches.

property StateAtoD;
(state == A) && twenty |=> (state == D);

endproperty

This section has covered most of the basic syntax of assertions. To conclude,
we return to the Booth multiplier example. Two properties and their associated
assertions are given, that the ready signal appears at the correct time and that
the correct answer is given. This last property clearly illustrates one of the great
advantages of using assertions. The product generated by the multiplier can be

182 Writing Testbenches

checked by writing a simple arithmetic statement. This example also shows how
an action can be associated with an assertion so that in the event of its failing, a
clear message is printed. Notice that the assertions are included in a module, not a
program. The point at which assertions are evaluated is described in Chapter 9.

module verify #(parameter AL = 8, BL = 8, QL = AL+BL)
(input logic signed [QL-1:0] qout,
input logic ready,
input logic signed [AL-1:0]ain,
input logic signed [BL-1:0] bin,
input logic clk, load);

default clocking clock_block
@(posedge clk);

endclocking

property LoadReady;
load |=> ##AL ready;

endproperty

property Product;
load |=> ##AL (qout == ain*bin);

endproperty

assert property (LoadReady);

assert property (Product)
else $error("%d * %d gives %d", ain, bin, qout);

endmodule

As an alternative to simulation, model checking tools can verify code using
static analysis. Assertions play a key part because RTL code, for example, is checked
against assertions. These can be the same as those used for simulation-based ver-
ification. Although model checking has yet to achieve wide usage, the high cost
of simulation means that it is likely to play an ever-increasing role. Assertions will
therefore become increasingly important in the design cycle.

Summary
Testbench writing is as important as modeling hardware. The entire SystemVerilog
language can be used to write testbenches. All but the simplest testbenches should be
structured to allow reuse. Stimuli, other than the clock and reset, should be included
in program blocks to avoid synchronization problems. Constrained random test

Exercises 183

generation can give a wider variety of stimuli than simple deterministic patterns.
Assertions may be used to verify responses.

Further Reading
Testbench structures are described in detail in the books by Bergeron [4] and Spear
[21]. Vijayaraghavan and Ramanathan [24] provide a comprehensive description of
assertion-based verification in SystemVerilog. The SystemVerilog Standard [2] gives
the definitive syntax.

Exercises
8.1 Write a testbench for the sequencer from the microprocessor example of

Chapter 7 that generates random opcodes and operands, such that the
program is limited to the bottom half of the address space and data to the
top half.

8.2 What are the benefits of using assertion-based verification?

8.3 The following piece of code is a SystemVerilog model of a counter. Write a
SystemVerilog testbench for this model. Include an assertion that the ready
signal is always 0 or 1.

module counter #(parameter N = 12)
(input logic clk, n_reset, load, output logic ready);

int count;

always_ff @(posedge clk, negedge n_reset)
if (!n_reset)

begin
count<=0;
ready <= ’1;
end

else
if (load)

count <= N;
else if (count > 0)

count <= count - 1;
if (count == 0)

ready <= ’1;
else

ready <= ’0;
endmodule

184 Writing Testbenches

8.4 The following SystemVerilog assertion is intended to determine whether the
counter of Exercise 8.3 is working correctly.

assert property (@(posedge clk) load |=> ##[1:$] ready);

Explain what this assertion tests and why it might be considered a poorly
designed assertion. Write an assertion that checks whether the ready signal
becomes true in the correct clock cycle. Write a second assertion to check that
the load signal is only true when the ready signal is true.

9SystemVerilog Simulation

SystemVerilog is a language for describing digital systems. To verify that a model is
correct, a simulator may be used to animate the model. It is also important to remem-
ber that RTL synthesis attempts to generate low-level hardware that behaves in the
same way as the original code. In other words, the interpretation of SystemVerilog
structures for synthesis is based on the simulation model. In the first section of
this chapter, the principles of digital simulation are described. The specifics of Sys-
temVerilog simulation and techniques to improve simulation efficiency are then
discussed.

9.1 Event-Driven Simulation
SystemVerilog is a language for describing digital systems; therefore, it should be of
no surprise that standard event-driven logic simulation algorithms are used. Such
algorithms are most easily described in terms of the simulation of structural models.
Behavioral models are evaluated in much the same way, where a procedural block
can be thought of as an element.

The objective of event-driven simulation is to minimize the work done by the
simulator. Therefore, the state of the circuit is only evaluated when a change occurs
in the circuit. It is possible to predict when the output of an element might change
because we know that such a change can only occur after an input changes. If we only
monitor the inputs to elements, we can only know that an output might change; the

185

186 SystemVerilog Simulation

logic function of the element determines whether a change actually occurs. As we
also know the delays through the element, we know when the output might change.
Thus, an element only needs to be evaluated when it is known that its output might
change but not otherwise. Nevertheless, even by predicting a possible change, it is
only necessary to re-evaluate elements when the possible changes occur. By following
the possible events through the circuit, we can minimize the computation done by
the simulator. Only elements that change need to be evaluated; anything that is not
changing is ignored.

The delays through elements are defined in terms of integer times. The units of
time might be nanoseconds or picoseconds. As the time is incremented in discrete
intervals, it is likely that, for any reasonably large circuit, more than one element
will be evaluated at any one time. Equally, there may be times at which no elements
are due for evaluation. This implies a form of time step control. As each element is
evaluated, any change in its output will cause inputs to further elements to change,
and hence the outputs of those elements may subsequently change. Clearly, it is
necessary to maintain a list of which signals change and when. An event is therefore
a new value of a signal, together with the time at which the signal changes. If the
event list is ordered in time, it should be easy to add new events at the correct place
in the future.

A suitable data structure for the event list is shown in Figure 9.1. When an event
is predicted, it is added to the list of events at the predicted time. When an event is
processed, it is removed from the list. When all the events at a particular time have
been processed, that time can be removed.

Current
Time

Events

tn

tn+1

tn+2

tn+3

Figure 9.1 Event list.

9.1 Event-Driven Simulation 187

This list manipulation is relatively easy to do in a block-structured program-
ming language, such as C, although adding new times to the middle of a list can be
awkward.

An element can be scheduled for processing when its inputs are known to
change. For example, consider an AND gate with a 4-ns delay. When the signal
at one input changes, it can be predicted whether the signal at the output changes
depending on the state of the other inputs of the gate. If the output does change, the
output event can be scheduled 4 ns later. The algorithm can be written in pseudo-C,
as shown in Listing 9.1.

for (i = each event at current_time)
{
update_node(i);
for (j = each gate on the fanout list of i)

{
update input values of j;
evaluate(j);
if (new_value(j) last_scheduled_value(j)) {

schedule new_value(j) at
(current_time + delay(j));

last_scheduled_value(j) = new_value(j);
}

}
}

Listing 9.1 Single-pass event scheduler.

An event is only scheduled if the new value is different from the value that has
previously been scheduled for that signal. If two or more events occur on input
signals to an element, more than one event may be scheduled for an output signal. It
is important to know that the new value is not merely different from the present value
but also from a value that might already be scheduled to be set in the future. This
algorithm therefore has a disadvantage as it stands because an element is evaluated
whenever an event occurs at an input. It is quite possible that two events might
be scheduled for the same gate at the same time. This could lead to a zero-width
spike being scheduled one delay later. Even worse, if the delays for rising and falling
output differ, the presence or absence of an output pulse would depend on the
order in which the input events were processed.

If zero-width pulses are to be suppressed, they can be considered as a special
case of the inertial delay model, introduced in Section 3.7. Real gates require pulses
of a minimum width to switch. The width of a pulse is (roughly) proportional to its
energy. A real system needs a certain amount of energy to change state. A pulse with
a width less than the delay is ignored. The previous algorithm can be extended to

188 SystemVerilog Simulation

include pulse cancellation if a pulse is less than the permitted minimum width, as
shown in Listing 9.2. This model assumes two-state logic. If an event is predicted
at a time less than the inertial delay after the previous event for that node, this new
event is not set, and the previous event is also removed. If more than two-state
logic is used, the meaning of an inertial delay and hence of a canceled event must
be thought about carefully. In order to cancel an event, it is necessary to search
through the event lists. Event cancellation is therefore best avoided, if possible.

for (i = each event at current_time)
{
update_node(i);
for (j = each gate on the fanout list of i)
{
update input values of j;
evaluate(j);
if (new_value(j) last_scheduled_value(j))
{
schedule_time = current_time + delay(j);
if (schedule_time last_scheduled_time(j) +

inertial_delay(j))
{
cancel_event at last_scheduled_time(j);
}

else {
schedule new_value(j) at schedule_time;
}

last_scheduled_value(j) = new_value(j);
last_scheduled_time(j) = schedule_time;
}

}
}

Listing 9.2 Single-pass event scheduler with inertial delay cancellation.

One further problem exists with the selective trace algorithm. A gate with a
zero delay would cause an event to be scheduled at the current simulation time if
an input changes. Thus, while events are being processed at the current time, new
events are being added to the end of the event list. There is clearly the potential here
for an infinite loop to be generated, where the simulation never advances beyond
the current simulation time. In practice, the only way to avoid this problem is to
count the number of events at a time point, and if they exceed some arbitrary limit,
then terminate the simulation. We have already noted that the presence or absence
of zero-width pulses can be dependent upon the order of evaluation of events at a
time point. Consider the circuit of Figure 9.2. If both gates have a zero delay and
the input changes from 0 to 1 as shown, a zero-width pulse may be generated.

9.2 SystemVerilog Simulation 189

0 → 1

1 → 0

0 → 1 → 0

Figure 9.2 Circuit with zero delays.

If the AND gate is evaluated first, both inputs will appear to be at logic 1, so the
output will become 1. The inverter is evaluated next, causing the other AND input to
change. The AND gate is evaluated again and the output changes back to 0. On the
other hand, if the inverter is evaluated first, both inputs to the AND gate will appear
to change simultaneously when it is evaluated, and no pulse is generated. Although
it is obvious here that the inverter should be evaluated first, this is not always the
case, and we must assume that the order of evaluation of gates is effectively arbitrary.
This arbitrariness can cause significant problems in SystemVerilog modeling.

9.2 SystemVerilog Simulation
The SystemVerilog simulation model is based upon the selective trace algorithm.
The standard [2] describes a stratified event queue in which the event list is divided
into a number of regions. These regions include:

• Preponed—sample stable values for later checking

• Active—blocking assignments

• Inactive—zero delay assignments

• NBA—Nonblocking assignments

• Observe—Evaluate assertions

• Reactive—Execute programs in testbenches

• Postponed—$strobe and $monitor print routines

Working backward, postponed events are created by $monitor and $strobe

tasks. These cannot create new events, so they will always be executed last at a
simulation time.

Reactive events refer to events generated in a program. As discussed in
Chapter 8, putting stimuli into a program ensures that all stimuli are created in
the same phase of the simulation cycle and not interleaved with other events. It
might seem slightly strange to have such events at the end of the cycle, but as will
be seen, these events can create new active events at the current simulation time.

190 SystemVerilog Simulation

So this ordering says, in effect, deal with any events generated at previous simulation
times, then generate new stimuli, and then process the effects of these stimuli.

Observe events are assertion events. These will not generate new events. Putting
these before reactive events gives us two opportunities to observe behavior—before
and after stimuli are generated.

Nonblocking assign update events are created by NBAs (<=). The evaluation
of the right-hand side of all NBAs is always done before any nonblocking assign
updates are done. This is important as it allows sequential systems to be modeled
correctly.

Inactive events are those events that are due to occur at the current time but that
have been explicitly delayed. In practice, this can be done with a zero delay (#0).
As a general guideline, do not use zero delays! A zero delay does not represent real
hardware (nor a useful testbench construct). Therefore, you are simply trying to
fool the simulator. Unless you know exactly what you are doing, it will probably
fool you!

Active events are, at first glance, just blocking assignments. As will be seen in
a moment, however, as the list of blocking assignment events is exhausted, subse-
quent event lists become active. So, for example, processing a list of nonblocking
assignment events could produce new active events (from blocking assignments, for
example), which are put directly back into the active event queue.

Finally, preponed events are sampling events.
The relationship between the regions is illustrated in Figure 9.3.

Previous
Time Slot

Next
Time
Slot

Preponed

Postponed

Active

Inactive

NBA

Observe

Reactive

Figure 9.3 SystemVerilog stratified event queue.

9.2 SystemVerilog Simulation 191

The pseudo-code of Listing 9.3, adapted from the SystemVerilog standard,
describes the simulation cycle. Each iteration of the loop is one cycle. T is the
current simulation time.

while (there are events) {
if (no active events) {

if (there are events in the next list) {
activate all events in the next list;

else { /*if no more events at the current time*/
advance T to the next event time;
}

}
E = any active event;
if (E is an update event) {

update the modified object;
add evaluation events for sensitive processes

to event queue;
}

else { /* shall be an evaluation event */
evaluate the process;
add update events to the event queue;
}

}
Listing 9.3 SystemVerilog simulation cycle.

Only active events are processed, but a new event may be assigned to one of
regions listed previously.

From the pseudo-code and this description, it can be seen that the list of active
events is one of the lists that has been created during some previous simulation
cycle, together with any (active) events that are generated during the current cycle.

Events may be processed from the active event list in any order (or to think
of it another way, events can be added to the event lists in any order). This is the
fundamental cause of non-determinism in SystemVerilog.1 We can be sure of only
two things:

1. Statements between begin and end will be executed in the order stated.

2. Nonblocking assignments will be performed after blocking assignments.

1. VHDL experts may be looking for delta delays. There is no such thing in SystemVerilog. The existence
of the delta delay means that a VHDL simulation is deterministic and repeatable between simulators.
The absence of delta delays in SystemVerilog means that simulations may not be deterministic and may
not be repeatable between different simulators.

192 SystemVerilog Simulation

Everything else is indeterminate. Moreover, the execution of a procedural block
can be interrupted to allow another procedural block to be executed. The skill in
writing SystemVerilog code is therefore to ensure that this non-determinism does
not matter. If the code is badly written, a race condition is likely to result—that is, a
situation where the procedure writing a value and the procedure reading that value
are racing each other. Depending upon which completes first, either the original or
the updated value may be read.

9.3 Races
Perhaps the best way to understand races is by examples. The first example comes
from the standard [2].

assign p = q;

initial
begin
q = 1;
#1 q = 0;
$display(p);
end

Because the execution of the initial procedure can be interleaved with the assign
statement, the value of p that is displayed could be 1 or 0. Either is “correct,” and
different simulators may give different results.

The second example was shown in Chapter 5. This is an example of an assign-
ment to a variable from two different procedures.

initial clock = ’0;
always #10ps clock = ˜ clock;

The assumption (presumably) is that the initial procedure is evaluated first and
then the clock changes every 10 ps. If the always procedure is evaluated first, the
assignment is redundant because it is superseded by the assignment in the initial
procedure. In either case, a clock waveform is generated, but the two cases are out
of phase.2

This ambiguity can be overcome by changing the assignment in the always pro-
cedure to an NBA. By definition, the NBA is evaluated after the blocking assignment

2. It is quite easy to demonstrate this problem by reversing the order of the statements.

9.3 Races 193

in the initial procedure. This is, however, bad practice because one variable is as-
signed values from two procedures.

A third example of a race is shown next.

always @(posedge clock)
b = c;

always @(posedge clock)
a = b;

This is supposed to model two flip-flops connected in series. If the procedures
are evaluated in the order written, at a rising clock edge, the value of c will be copied
to b. A new event will be scheduled at the current time, causing that same value
to be copied to a. This is clearly not the intended behavior. If the procedures are
evaluated in the opposite order, the correct behavior is modeled.

9.3.1 Avoiding Races
In order to achieve deterministic behavior, there are several rules that should be
followed when writing models and testbenches.

Do not assign to the same variable from two or more procedures. Not only
is contention liable, but as can be seen from the second example, multiple assign-
ments can cause ambiguous behavior. Part of the problem is the keyword initial.
Procedures defined with the initial keyword are executed once; they are not
initialization blocks.

Use NBAs for modeling sequential logic. The third example evaluates correctly
if the two assignments are made nonblocking, irrespective of the order of evaluation.
This is because NBAs are evaluated last and cannot influence each other.

Conversely, use blocking assignments to evaluate combinational logic. Assign-
ments made in combinational logic models are supposed to take immediate effect.
The use of NBAs would often be confusing (and wrong).

Some experts argue that blocking and nonblocking assignments should not be
mixed in the same procedure. Certainly, it is not a good idea to use both types of
assignment to the same variable as some synthesis tools will object (although such
constructs are syntactically valid). This restriction has generally been followed in
these notes, but it is possible to mix the two types of assignments such that blocking
assignments are used for all combinational logic and NBAs used for all registered
outputs.

Do not use zero delays (#0). They are not necessary and will cause confusion,
as explained previously.

194 SystemVerilog Simulation

9.4 Delay Models
SystemVerilog provides five ways to model delays:

(1) Left-hand side (LHS) of blocking assignments:

#5 a = b;

(2) Right-hand side (RHS) of blocking assignments:

a = #5 b;

(3) LHS of NBAs:

#5 a <= b;

(4) RHS of NBAs:

a <= #5 b;

(5) LHS of continuous assignments:

assign #5 a = b;

None of these constructs is needed for RTL modeling. (1) and possibly (3) and
(4) are useful for testbench writing. (4) is a transport (pure) delay that can be used
to model delays in sequential logic (such as clock to output delay in a flip-flop).
(5) is an inertial delay that can be used to model delays in combinational logic. To
understand why some forms are useful and others are not, we need to understand
what precisely occurs in each case.

In form (1), the simulator waits for, for example, five time units and then executes
the assignment. Any changes to inputs during this wait period are ignored. Clearly,
this does not model real hardware, but is useful for describing a waveform in a
testbench.

Form (2) causes the present value of the RHS to be scheduled for assignment
at some point in the future. This is a transport or pure delay—every change, no
matter how rapid, is transmitted to the output. This could be used to model, say, a
transmission line. This is not particularly useful for testbench design.

Form (3) again causes a five-unit wait before assigning the then present value of
the RHS. Again, any intermediate changes are ignored and so this does not model
real hardware. This can be used in testbenches, but has no advantage over form (1).

As noted, (4) can be used to model delays in sequential logic. A transport delay
is appropriate here, in contrast to the last form.

The final form, (5), models an inertial delay. Therefore, this form of delay best
models combinational logic.

9.5 Simulator Tools 195

9.5 Simulator Tools
The major EDA tool vendors each have their own SystemVerilog simulators. Addi-
tionally, there are a number of open source simulators available for older versions
of Verilog. Although these tools have been written by different people at different
times, they all implement versions of the simulation algorithm described earlier in
this chapter. Therefore, in general terms, the simulators behave in broadly the same
ways. There is indeterminacy in the simulation algorithm and therefore care has to
be taken to ensure that models and testbenches are written in such a way that the
indeterminacy does not matter.

All simulators also go through a similar sequence of operations before simula-
tion. SystemVerilog models have to be compiled and elaborated. Compilation is the
process of translating SystemVerilog code from text into a binary form that can be
executed by the simulator. This is closely analogous to the task performed by the
compiler of a software language, such as C. Because SystemVerilog is weakly typed,
it is possible to write ambiguous and poorly defined code. To some extent, this can
be alleviated by using a linting tool to analyze files before compilation to identify
badly written code.

The next step, elaboration, is similar to linking in a software environment. Typ-
ically, two or more SystemVerilog modules in a number of source files are compiled
independently. Therefore, during elaboration, model instances have to be bound
to model declarations and the model hierarchy established. Moreover, parameter
values have to be resolved and nets connected together. If parts of the model de-
scription are missing or if there is ambiguity, simulation cannot go ahead, and the
user needs to be told.

Following elaboration, a binary representation of the complete model hierarchy
is loaded into the simulator (or linked with the simulator to form a standalone
executable).

The user-interface of the simulator acts as a SystemVerilog process. The user
can start and stop the simulation and inspect signals. The most immediately ob-
vious aspect of a simulator is the waveform display tool, which allows inspection
of the function of the model being simulated. For example, the waveforms gen-
erated by the testbench for the N-bit adder, given in Section 4.7, are shown in
Figure 9.4.3

The other main tool included in most simulators is the interactive debugger.
This can be used in exactly the same way as software debuggers. Breakpoints can be

3. These waveforms were displayed using an open source waveform tool—GTKWave.

196 SystemVerilog Simulation

0

0

0 F

0 0 8

7

7

F

F
Time
Sum [3:0]

A[3:0]

B[3:0]

Cin
Cout

7os 14os 21os

Figure 9.4 Waveforms generated by simulation of an N-bit adder.

inserted in the source code to suspend the simulation at a particular line. The values
of variables and nets can be monitored. This can be coupled with a coverage tool
to determine exactly how many times (if at all) a particular line is executed. All of
these tools differ in the exact implementation and interface and therefore details
will not be given here. It is, however, worth investing the time in finding out how to
exploit the power of such tools because that time will be paid off in much shorter
development and debugging times.

Summary
The SystemVerilog simulation model has five distinct event queues. The ordering
of events within these queues is not defined. This leads to non-determinism in
SystemVerilog simulations. It is possible to make SystemVerilog simulations deter-
ministic by adopting well-tried design styles. These styles are also appropriate for
RTL synthesis. There are five possible styles of delay modeling, but only two of these
are useful for RTL modeling and one other is best suited to testbench writing.

Further Reading
Logic simulation is described in the books by Miczo [15] and Abramovici, Breuer,
and Friedman [3]. The SystemVerilog simulation cycle is described in the Sys-
temVerilog standard [2].

Exercises
9.1 Explain the SystemVerilog stratified event queue.

9.2 The following piece of code is a SystemVerilog model of two flip-flops.
Explain why the behavior of this model might not be the same in two different
simulators.

Exercises 197

always_ff @(posedge clock)
a = b;

always_ff @(posedge clock)
b = c;

9.3 Explain what is meant by “inertial” and “transport” delays. Give an example
of how each would be described in a SystemVerilog model.

9.4 A SystemVerilog model of two interconnected state machines is shown in
the following. What is the likely purpose of the two zero delays (#0) in the
model? Rewrite this model such that the non-deterministic features are
removed.

always_ff @(posedge clock,
negedge n_reset)

if (!n_reset)
begin
enable = ’0;
state = s0;
end

else
case (state)

s0: begin
enable = ’0;
if (start)

state = s1;
end

s1: begin
#0 enable = ’1;
if (timed)

state = s0;
end

endcase

always_ff @(posedge clock,
negedge n_reset)

if (!n_reset)
begin
count = 0;
timed = ’0;
end

else
begin
if (enable)

198 SystemVerilog Simulation

begin
count++;
timed = ’0;
end

if (count == 255)
begin
#0 timed = ’1;
count = 0;
end

end

10SystemVerilog Synthesis

Verilog was originally designed as a hardware description language. In other
words, the language was designed to model the behavior of existing hardware, not
to specify the functionality of proposed hardware. Moreover, when the Verilog lan-
guage was originally designed, there were no automatic synthesis tools in widespread
use. Therefore, the meaning of different SystemVerilog constructs in hardware terms
was derived some years after the language was standardized. The consequence of
this is that parts of SystemVerilog are not suitable for synthesis.

At this point, we should define what we mean by the term synthesis. The long-
standing objective of design automation tool development has been to compile high-
level descriptions into hardware in much the same way that a computer software
program is compiled into machine code.

Figure 10.1 shows a simplified view of the design process. After a specification
has been agreed upon, a design can be partitioned into functional units (architectural
design). Each of these functional units is then designed as a synchronous system.
The design of these parts can be done by hand, as described in Chapter 6. Thus,
a state machine is designed by formulating an ASM chart, deriving next state and
output equations, and implementing these in combinational logic. At this point,
the gates and registers of the design can be laid out and wired up on an integrated
circuit or PLD.

Figure 10.1 shows how synthesis tools can automate parts of this process. RTL
synthesis tools take a SystemVerilog description of a design in terms of registers,

199

200 SystemVerilog Synthesis

Specification

Architectural
Design

State Machine/
RTL Design

Combinational
Logic Design

Place and Route

RTL
Synthesis

Behavioral
Synthesis

Figure 10.1 High-level design flow.

state machines, and combinational logic functions and generate a netlist of gates
and library cells. As we will see, the SystemVerilog models described in Chapters 4,
5, 6, and 7 are mostly suitable for RTL synthesis. Behavioral synthesis tools, on the
other hand, take algorithmic SystemVerilog models and transform them into gates
and cells. The user of a behavioral synthesis system would not have to specify clock
inputs, for instance, simply that a particular operation has to be completed within
a certain time interval. RTL synthesis tools are gaining widespread acceptance;
behavioral synthesis tools are still relatively rare. Although this chapter is about
RTL synthesis, it is likely that in a few years behavioral synthesis tools will be widely
accepted, in a manner analogous to the way that high-level software programming
languages such as Java are coming to replace lower-level languages such as C.

The last stage of the synthesis process, place and route, is carried out by separate
specialized tools. In the case of programmable logic, the manufacturers of the PLDs
often supply these tools.

10.1 RTL Synthesis
The functions carried out by an RTL synthesis tool are essentially the same as those
described in Chapter 6. The starting point of the synthesis process is a model (in
SystemVerilog) of the system we wish to build, described in terms of combinational
and sequential building blocks and state machines. Thus, we have to know all the

10.1 RTL Synthesis 201

inputs and outputs of the system, including the clock and resets. We also have to
know the number of states in state machines—in general, RTL synthesis tools do
not perform state minimization. From this we can write SystemVerilog models of
the parts of our system. In addition, we may wish to define various constraints. For
instance, we might prefer that a state machine be implemented using a particular
form of state encoding. We almost certainly have physical constraints such as the
maximum chip size and hence the maximum number of gates in the circuit and the
minimum clock frequency at which the system should operate. These constraints
are not part of SystemVerilog, in the sense that they do not form part of the simu-
lation model, and are often unique to particular tools, but may be included in the
SystemVerilog description.

The IEEE standard 1364.1-2002 defines a subset of Verilog for RTL synthesis.
The purpose of this standard is to define the minimum subset that can be accepted by
any synthesis tool. SystemVerilog is based on the 2001 enhancements to Verilog. The
synthesizable examples in this book are designed to conform to the 1364.1 standard.

10.1.1 Non-Synthesizable SystemVerilog
In principle, most features of SystemVerilog could be translated into hardware. In
general, those parts of SystemVerilog that are not synthesizable are constructs in
which exact timing is specified and structures whose size is not completely defined.
Poorly written SystemVerilog may result in the synthesis of unexpected hardware
structures. These will be described later.

The following SystemVerilog constructs are either ignored or rejected by RTL
synthesis tools.

• All delay clauses (e.g., #10). Delays are simulation models. A model can be
synthesized to meet various constraints, but cannot be synthesized to meet
some exact timing model. For instance, it is not possible to specify that a gate
will have a delay of exactly 5 ns. It is reasonable, on the other hand, to require
a synthesis tool to generate a block of combinational logic such that its total
delay is less than, say, 20 ns.

• File operations suggest the existence of an operating system. Hence, file
operations cannot be synthesized and would be rejected by a synthesis tool.

• Real data types are not inherently unsynthesizable, but will be rejected by
synthesis tools because they require at least 32 bits, and the hardware
required for many operations is too large for most ASICs or FPGAs.

• Initial blocks will be ignored. Hardware can’t exist for a limited period of
time and then disappear!

202 SystemVerilog Synthesis

10.1.2 Inferred Flip-Flops and Latches
It is important to appreciate that synthesis tools (like most computer software) are
basically stupid. While there are reserved words in SystemVerilog to specify whether
a model is combinational or sequential, inconsistent models may only generate
warnings. Therefore, the fundamental problem with synthesizing SystemVerilog
models is to ensure that the hardware produced by the synthesis system is what you
really want. One of the most likely “errors” is the creation of additional flip-flops or
latches. Therefore, in this section, we will describe how the existence of flip-flops
and latches is inferred.

A flip-flop or latch is synthesized if a net or register holds its value over a
period of time. In SystemVerilog, a net holds its value until it is given a new
value. A flip-flop or latch is created implicitly if some paths through a procedure
have assignments to a net or register while others do not. This typically happens
if a case statement or an if statement is incomplete in the sense that one or
more branches does not contain an assignment to a register while other branches
do contain such an assignment, or if the if statement does not contain a final
else.

The term “flip-flop” refers here to a memory element triggered by an edge of
the clock. “Latch” refers to a level-sensitive device, controlled by some signal other
than the clock. Thus, a flip-flop would be created if the event list of a block has a
posedge or negedge expression, while a latch would be created if the level value
of a net were used instead.

In principle, therefore, procedural blocks with various edge-triggered and
level-sensitive expressions could be synthesized. In practice, synthesis tools rec-
ognize a small number of fairly simple patterns, as shown in the rest of this
section. These examples can act as templates for larger examples. It should be
noted that in all these examples, the net names are not significant to the syn-
thesis tool. Thus, a clock net might be called “Clock” or “Clk1” or, with equal
validity, “Data.” Note, however, that good software engineering practice should
be applied, and meaningful identifiers should be used for the benefit of your
readers.

10.1.2.1 Level-Sensitive Latch If we really want to create a latch, we can specify
it by using the particular form of the always block:

always_latch
if (Ctrl)

Z <= A;

10.1 RTL Synthesis 203

A general always block can also be interpreted as a latch. The following example
shows the SystemVerilog that would be interpreted to specify a level-sensitive latch
by an RTL synthesis tool.

always @(Ctrl or A)
if (Ctrl)

Z <= A;

The always statement has an event list containing the net (or register) Ctrl
and the net, A, which is assigned to the output. Therefore, the statement is executed
when Ctrl or A changes. Z is assigned the value of A if Ctrl has just changed to
a 1. While Ctrl is 1, any change in A is transmitted to the output. Otherwise, no
assignment to Z is specified. Therefore, it may be inferred that Z holds its value, and
hence it is inferred that Z is a registered net. This inference can be avoided if the
else clause is included:

always @(Ctrl or A)
if (Ctrl)

Z <= A;
else

Z <= 1’b0;

The value of Z is therefore Ctrl AND A. On the other hand, specifying a block
as a latch when it is not should generate a warning.

always_latch
if (Ctrl)

Z <= A;
else

Z <= 1’b0; // This is inconsistent

Case statements are interpreted in a similar manner.

always @(Sel, A, B)
case (Sel)

2’b00 : Y <= A;
2’b10 : Y <= B;
default;

endcase;

The default clause covers the patterns 01 and 11 (and combinations with X
and Z, although they are irrelevant to synthesis). If the default clause were omitted,
the case statement would still be syntactically correct. When Sel is one of these

204 SystemVerilog Synthesis

Sel(0)

B

G

D

Q

Q

YSel(1)

A

Figure 10.2 Circuit synthesized from an incomplete case statement.

two missing patterns, Y is assumed to hold its value. Hence, the circuit of Figure 10.2
is synthesized.

Note that the latch used in these examples would be taken from a library.
Such elements cannot be synthesized from first principles by a synthesis tool. The
continuous assignment statement

assign y = E ? D : y;

in which a signal appears on both the left- and right-hand sides of the net assignment,
might be synthesized to the circuit of Figure 10.3. This is apparently functionally
correct, but it contains a potential hazard and is therefore a poor latch design. The
synthesis standard disallows such constructs.

10.1.2.2 Edge-Sensitive Flip-Flop As described in Chapter 5, edge-sensitive
behavior may be modeled by putting a posedge or negedge expression in an
event list:

always_ff @(posedge clk)
q <= d;

or

always @(posedge clk)
q <= d;

The posedge and negedge statements are interpreted by a synthesis system to
model edge-sensitive behavior. Hence, net assignments that can only be reached by
fulfilling an edge-sensitive condition will be interpreted as assignments to registered

E Y

D

Figure 10.3 Asynchronous circuit synthesized from a feedback assignment.

10.1 RTL Synthesis 205

nets. It should be remembered that the net name itself is not meaningful to the
synthesis tool.

Asynchronous sets and resets are modeled by including the active edge in the
event list:

always_ff @(posedge clk, posedge reset)
if (reset)

q <= 1’b0;
else

q <= d;

This structure would be interpreted, correctly, as a positive-edge triggered flip-
flop with an active high asynchronous reset. The reset is tested before the clock and
therefore has an effect irrespective of the clock. The clock net to which the flip-flop
is edge-sensitive should be tested in the last branch of the if statement. Similarly,
synchronous sets and resets and clock enable inputs as described in Chapter 5 will
be correctly interpreted by an RTL synthesis tool.

We saw in Chapter 9 that the SystemVerilog simulation model means that non-
blocking assignments do not take effect until all other events have been processed
at the current simulation time. Blocking assignments, without delays, on the other
hand take immediate effect. The synthesized forms of nonblocking and blocking
assignments should therefore be different. The following fragment of SystemVerilog
synthesizes to the structure shown in Figure 10.4.

always_ff @(posedge clock)
begin
P <= A & B;
Z <= P | C;
end

In the first NBA, P is given a value. When P is referenced in the second assign-
ment, the new value of P has not yet taken effect. Therefore, the previous value of P
is used. The value of P (and of Z) is not updated until the procedure resumes, at the
next clock edge. Therefore, P behaves exactly as if its value were stored in a flip-flop.

D

Q

Q

Clock

B P

D

Q

Q
C

A

Z

Figure 10.4 Circuit synthesized by NBAs.

206 SystemVerilog Synthesis

Clock

B P

D

Q

Q
C

A

Z

Figure 10.5 Circuit synthesized using a blocking assignment.

By contrast, a blocking assignment takes effect immediately. Therefore, the
following piece of code, in whichP is assigned a value through a blocking assignment,
is synthesized to the structure of Figure 10.5.

always_ff @(posedge clock)
begin
P = A & B;
Z <= P | C;
end

In general, use NBAs to model edge-triggered flip-flops. You can use blocking
assignments to model temporary variables, such as P in the last example, but Sys-
temVerilog does not allow these temporary variables to be distinguished from other
registers. Therefore, to avoid ambiguity and potential race problems, do not mix
blocking and nonblocking assignments in the same procedural block. Note also that
according to IEEE standard 1364.1, the event list should only contain edge-sensitive
events.

10.1.3 Combinational Logic
In general, if a piece of hardware is not a level-sensitive or edge-sensitive sequential
unit, it must be a combinational unit. Therefore, a SystemVerilog description that
does not fulfill the conditions for synthesis to level-sensitive or edge-sensitive se-
quential elements must by default synthesize to combinational elements. Hence, the
problem of describing combinational hardware in SystemVerilog is to ensure that
we do not accidentally cause the synthesis tool to infer the existence of registers.

To ensure that combinational logic is synthesized from a SystemVerilog proce-
dure, we must observe three conditions. First, we must not have any edge-triggered
events in the event list. Second, if a variable has a value assigned in one branch of an
if statement or a case statement, that variable must have a value assigned in every
branch of the statement (or it must have a value assigned before the branching state-
ment). Finally, all the nets sensed either as branching conditions or in assignments
must be included in the event list of the process, if used.

10.1 RTL Synthesis 207

For example, the following is a model of a state machine with two states, two
inputs, and two outputs.

module Fsm (output logic OutA, OutB,
input Clock, Reset, InA, InB);

enum {S0, S1, S2} PresentState;

always_ff @(posedge Clock or posedge Reset)
if (Reset)

PresentState <= S0;
else

case (PresentState)
S0: begin

OutA <= 1’b1;
if (InA)

PresentState <= S1;
end

S1: begin
OutA <= InB;
OutB <= 1’b1;
if (InA)

PresentState <= S2;
end

S2: begin
OutB <= InA;
PresentState <= S0;
end

endcase
endmodule

Although this is an acceptable simulation model, if it were synthesized, OutA
and OutB would be registered in addition to PresentState because they have
values assigned to them within an edge-triggered procedure. Thus, we can divide
the model into two procedures, one combinational and one sequential. We will use
blocking assignments in the “combinational” procedure to ensure that all the values
are updated before they are read into registers.

module Fsm (output logic OutA, OutB,
input Clock, Reset, InA, InB);

enum{S0, S1, S2} PresentState, NextState;

always_ff @(posedge Clock or posedge Reset)
if (Reset)

PresentState <= S0;

208 SystemVerilog Synthesis

else
PresentState <= NextState;

always_comb
case (PresentState)
S0: begin

OutA = 1’b1;
if (InA)

NextState = S1;
else

NextState = S0;
end

S1: begin
OutA = InB;
OutB = 1’b1;
if (InA)

NextState = S2;
else

NextState = S1;
end

S2: begin
OutB = InA;
NextState = S0;
end

endcase
endmodule

This will, again, simulate as a state machine giving apparently correct behav-
ior. When synthesized, however, OutA and OutB will be registered through asyn-
chronous latches because in state S0 no value is assigned to OutB and hence OutB
holds onto its value. Similarly in state S2, no value is assigned to OutA. This should
generate warnings.

This error can be resolved by explicitly including an assignment to both OutA

and OutB in every branch of the case statement. Alternatively, both signals can be
given default values at the start of the procedure:

always_comb
begin
OutA = 1’b0;
OutB = 1’b0;
case (PresentState)
S0: begin

OutA = 1b’1;
if (InA)

NextState = S1;
else

10.1 RTL Synthesis 209

NextState = S0;
end

S1: begin
OutA = InB;
OutB = 1b’1;
if (InA)

NextState = S2;
else

NextState = S1;
end

S2: begin
OutB = InA;
NextState = S0;
end

endcase
end

This procedure now synthesizes to purely combinational logic, while the other
procedure synthesizes to edge-triggered sequential logic.

Note, however, that it is not essential to use the always_comb reserved word.
It is also possible to use an always block, with a default event list:

always @(*)

It is also possible to list those signals that should cause the block to be evaluated.
For example, suppose that the block were specified with:

always @(PresentState)

Most synthesis tools would (or should) give a warning, however. A piece of
combinational logic will be synthesized with three inputs (PresentState, InA,
and InB) and three outputs (NextState, OutA, and OutB). Hence, a change at any
of the inputs could cause a change at an output. If the SystemVerilog model has only
one signal in its event list (PresentState), this model and the synthesized circuit
would behave differently when simulated. To avoid this, all the signals to which the
combinational logic is sensitive should be included in the event list.

The style of coding will also influence the final hardware. For example, nested
if ... else blocks, such as the priority encoder of Section 4.3, will tend to result
in priority encoding and hence long chains of gates and large delays. On the other
hand, case statements such as the state machine will tend to be synthesized to par-
allel multiplexer-type structures with smaller delays. (However, see Section 10.2.3.)
Similarly, shift operations will result in structures simpler than multiplication and
division operators.

210 SystemVerilog Synthesis

Table 10.1 Summary of RTL Synthesis Rules

Event List Branches

Combinational
logic

All inputs in event list (nets and registers
on RHS of assignments and used in if
and case statements) or use
always comb

Complete
(or default values)

Latches All inputs in event list (nets and registers
on RHS of assignments and used in if
and case statements) or use
always latch

Not complete

Flip-flops Edge-sensitive clock, set and reset only Not complete

10.1.4 Summary of RTL Synthesis Rules
It is easy to make mistakes and to accidentally create latches when combinational
logic is intended (or worse, to deliberately create latches when you really want a flip-
flop—see Section 6.5.4). Table 10.1 summarizes the rules for creating combinational
and sequential logic from processes.

There is one further rule that applies to all synthesizable logic: Do not assign
a value to a net or variable in two or more procedures. The only exception to this
rule is the case of three-state logic, as in the bus in the microprocessor example of
Chapter 7. You should be able to draw a block diagram of your design, with each
procedure represented by a box. If two boxes appear to be driving the same wire,
you have done something wrong. (Indeed, if you can’t draw the block diagram, you
have made a really serious mistake!)

10.2 Constraints
For any non-trivial digital function, there exist a number of alternative implementa-
tions. Ideally, a digital system should be infinitely fast, infinitesimally small, consume
no power, and be totally testable. In reality, of course, this ideal is impossible. There-
fore, the designer has to decide what his or her objectives are. These objectives are
expressed to the synthesis tool as constraints. Typically, a design has to fit on a partic-
ular FPGA and has to operate at a particular clock frequency. Thus, two constraints
of area and speed have to be specified. It is possible that these constraints will be
in conflict. For example, a design may fit on a particular FPGA, but not work at
the desired speed—to reach the desired speed may require more logic and hence
more area, as illustrated in Figure 10.6. Assuming that CMOS logic is used and that

10.2 Constraints 211

A

B C
D E

D

C
A
B
D

E

(a) (b)

Figure 10.6 Two versions of a combinational circuit: (a) smaller, slower; and (b) larger, faster.

the gate delays are identical, the circuit of Figure 10.6(a) needs 16 transistors and a
maximum delay of 4 units, while the circuit of Figure 10.6(b) requires 18 transistors
and has a maximum delay of 3 units.

10.2.1 Attributes
Synthesis constraints can be expressed in two ways: as SystemVerilog attributes in
the model description or as some other format in a separate file. The 1364.1 IEEE
standard defines 16 attributes that can be included in the SystemVerilog description.
In general, attributes are used to pass information to synthesis tools, but are ignored
by simulators.

For example, 1364.1 defines one attribute for specifying the state encoding:

typedef enum{S0, S1, S2} fsm_state;
(* synthesis, fsm_state="onehot" *)
fsm_state present_state;

This might instead be expressed in a separate constraints file using a format
like:

define_attribute fsm_state present_state "onehot"}

Other example attribute definitions could be as follows:

(* synthesis, black_box *)}

(* synthesis, implementation="ripple" *)}

In general, the type and format of constraints are unique to particular synthesis
tools; in the following sections we discuss only the general types of constraints that
can be specified.

212 SystemVerilog Synthesis

10.2.2 Area and Structural Constraints
10.2.2.1 State Encoding As discussed in Chapter 6, a state machine with s states
can be implemented using m state variables, where

2m−1 < s ≤ 2m

There are (2m)!
(2m−s)! possible state assignments. There is no method for determining

which of these assignments will result in minimal combinational next state logic.
In addition, other non-minimal state encoding schemes, such as one-hot, exist.
No RTL synthesis tools attempt to tackle the general state assignment problem.
Heuristic methods may be able to choose either a binary counting sequence or
one-hot encoding. Therefore, one design constraint that can be specified is the state
encoding method, either using the IEEE 1364.1 style or by specifying the code with
a keyword, as shown previously.

10.2.2.2 Resource Constraints The use of a particular technology may constrain
the type of structures that can be created. Features of different FPGA technologies
are discussed later in this chapter. Having selected a particular technology, a range of
different-sized devices may exist, and very often it is desirable to select the smallest
possible. Thus, the specification of a particular device is a constraint on the synthesis
process.

As a single ASIC or FPGA has to be connected via a printed circuit board to
other devices, the functionality of each pin may have to be determined in advance
of the synthesis. Therefore, another constraint is the association of a signal with a
particular pin.

Under some circumstances, complex logic blocks may be reused. For example,
the following piece of code can be implemented with two adders or with one adder
and two multiplexers.

if (Select)
q = a + b;

else
q = c + d;

A synthesis constraint can choose whether resources may be shared, either at a
local level or globally. Such choices have implications for both the area and speed
of the final design. The following attribute can be attached to a module:

(* synthesis, op_sharing *)

Finally, it may be desirable to describe a function in SystemVerilog in order
to verify the correct operation of the rest of the system, but when the system is

10.2 Constraints 213

D

Q

QD

Q

Q

Clock Frequency is 20 MHz
Clock period is 50 ns
Maximum delay through combinational logic is 48 ns

Delay 1 ns Setup 1 ns
Combinational

Logic

Figure 10.7 Basic timing constraint.

synthesized we would rather use a predefined library component to implement that
function instead of synthesizing the function from first principles. Therefore, we
can designate that a particular unit is a “black box” that we will incorporate from
a library, for example,

(* synthesis, black_box *)

10.2.2.3 Timing Constraints If we want a circuit to operate synchronously with
a clock at a particular frequency, say 20 MHz, we know that the maximum delay
through the state registers and the next state logic is the reciprocal of the clock
frequency, in this case 50 ns. Therefore, a constraint on the synthesis tool can be ex-
pressed as the clock frequency or as the maximum delay through the combinational
logic, as shown in Figure 10.7.

The difficulty, from the synthesis point of view, with this approach is that the
delay through the combinational logic can only be estimated. The exact delay de-
pends on how the combinational logic is laid out, and hence the delay depends
on the delay through the interconnect. Therefore, the synthesis is performed using
an estimate of the likely delays. Having generated a netlist, the low-level place and
route tool attempts to fit the design onto the ASIC or FPGA. The place and route
tool can take into account the design constraint—the maximum allowed delay—and
the delays through the logic that has been generated. At this stage, it may become
apparent that the design objective cannot be achieved, so the design would have to
be synthesized again with a tighter timing constraint to allow for the extra time in
the routing. This can mean that the final goal is never reached. To speed up hard-
ware more operations are performed concurrently, which means that the design is
larger. Hence, the design is harder to place and route, and hence the routing delays
increase, ad infinitum.

More specific timing, constraints can be applied to selected paths. If a design is
split between two or more designers, the signal path between registers in two parts

214 SystemVerilog Synthesis

D

Q

QD

Q

Q

Input Logic
Delay = 24 ns

Output Logic
Delay = 20 ns

Figure 10.8 Input and output timing constraints.

of the design may include combinational logic belonging to both parts of the design.
If both parts of combinational logic were each synthesized without allowing for the
existence of the other, the total delay between registers could be greater than one
clock period. Therefore, timing constraints can be placed upon paths through the
input and output combinational logic in a design, as shown in Figure 10.8.

10.2.3 full_case and parallel_case Attributes
Many SystemVerilog designers attach the full_case and parallel_case at-
tributes to case statements, without thinking. In general, this is a bad practice
and these directives should not be used. The attributes only apply to synthesis and
may cause the synthesized hardware to have different functionality from that simu-
lated in RTL. To understand why these attributes may cause problems, we need to
understand what the terms “full case” and “parallel case” mean.

In SystemVerilog, each case item (the term to the left of the colon in each branch)
is tested in turn against the case expression. A full case statement is one in which
every combination of 0, 1, z, x in the case expression can be matched against one
(or more) case item(s). This applies to casez (and casex) statements, in which there
are don’t care terms. It is not required that a case statement is full, but, on the other
hand, this condition can be achieved simply by including a default item in the case
statement. If a case statement is not full, and the uncovered alternatives include
combinations of 0 or 1, the correct interpretation in synthesis would be to create
a latch. For example, the following is a simplified version of the priority encoder
from Chapter 5. If the default item were omitted, the pattern 4b’0000 (or, indeed,
4b’000z or any pattern that included an x) would not be matched and the case
statement would not be full.

always @(a)
casez (a)

4’b1??? : y = 2’b11;
4’b01?? : y = 2’b10;
4’b001? : y = 2’b01;
4’b0001 : y = 2’b00;
default : y = 2’b00;

endcase

10.2 Constraints 215

By including the full_case attribute, the designer is telling the synthesis tool
to treat any unspecified combinations of inputs as don’t care conditions—in other
words, to assume that a default item exists. Thus, the simulated and synthesized
interpretations of the code would be different. Of course, if the default item is
present, the full_case attribute is redundant!

The recommendation is, therefore, to omit the full_case attribute and to
include a default item. The output values from the default should be meaningful
values (not x or z), otherwise a latch might result. In the previous example, setting
the default result to 2b’xx would mean that no valid hardware could be produced
for the default cases and hence a latch would be implied. It is usual to include the
default item as the last case item.

A parallel case statement is one in which each combination of inputs is covered
exactly once. It is perfectly legal to write a case statement such that an input pattern
can match to two or more case items. Because the items are matched in the order they
are written, this implies the existence of priority logic. The use of a case statement
suggests, however, that parallel logic should be used. Adding the parallel_case
attribute forces the synthesis tool to treat the case statement as if it really is parallel.
Inevitably, this will result in synthesized hardware that behaves differently from
what was simulated at RTL.

The previous example is parallel. Including the parallel_case attribute is
therefore redundant. The following example is not parallel:

always @(a)
casez (a)

4’b1??? : y = 2’b11;
4’b?1?? : y = 2’b10;
4’b??1? : y = 2’b01;
4’b???1 : y = 2’b00;
default : y = 2’b00;

endcase

In a simulation, this code would appear to function in an identical manner to
the priority encoder. The pattern 4’b1011 would match the first pattern, and so
2’b11 would result. This pattern also matches the third and fourth items. Clearly,
therefore, the case statement is not parallel. By specifying the parallel_case

attribute, the designer would be attempting to fool the synthesis tool—and would
probably fail.

Therefore, do not use the parallel_case attribute. If you must have priority
logic, use if statements. If you use case statements, read the messages from the
synthesis tool. If the tool reports that your case statement is not parallel, change the
case statement to make it parallel.

216 SystemVerilog Synthesis

10.3 Synthesis for FPGAs
In principle, an RTL model of a piece of hardware coded in SystemVerilog can
be synthesized to any target technology. In practice, the different technologies and
structures of ASICs and FPGAs mean that certain constructs will be more efficiently
synthesized than others and that some rewriting of SystemVerilog may be needed
to attain the optimal use of a particular technology.

In this section we compare two FPGA technologies and show how the Sys-
temVerilog coding of a design can affect its implementation in a technology. The
descriptions of the technologies are deliberately simplified.

FPGAs are based on static RAM technology. Each FPGA consists of an array of
the configurable logic blocks (CLBs) shown in Figure 1.13. Each logic block has one
or more flip-flops and a combinational block. Each flip-flop has an asynchronous
set and reset, but only one of these may be used at one time. Each flip-flop also has
a clock input that can be positive or negative edge-sensitive, and each flip-flop has a
clock enable input. In addition to the CLB shown, a number of three-state buffers
exist in the array.

CPLDs are based on antifuse technology. Two types of logic block exist in more
or less equal numbers—a combinational block and a sequential block. Each flip-flop
in a sequential block has an asynchronous reset.

Both types of FPGA therefore have a relatively high ratio of flip-flops to com-
binational logic. Conventional logic design methods tend to assume that flip-flops
are relatively expensive and combinational logic is relatively cheap, and that there-
fore sequential systems such as state machines should be designed with a minimal
number of flip-flops. The large number of flip-flops in an FPGA and the fact that
the flip-flops in an FPGA or a CPLD cannot be used without the combinational
logic reverses that philosophy and suggests that one-hot encoding is a more efficient
state encoding method, particularly for small state machines.

Similarly, a global asynchronous set or reset is the most efficient way of ini-
tializing both types of device. If both set and reset are required, it is necessary to
use additional combinational logic, hence it may be better to have, for example, an
asynchronous reset and a synchronous set.

In both technologies, the flip-flops are edge-sensitive; therefore, level-sensitive
latches have to be synthesized from combinational logic. Again, this can waste flip-
flops, so level-sensitive designs are best avoided. It is, however, reasonable to assume
that any level-sensitive latches will exist as library elements and therefore that they
will be hazard-free.

In both technologies, it may be desirable to instantiate predefined library com-
ponents for certain functions. Not only is the logic defined, but the configuration of

10.3 Synthesis for FPGAs 217

logic blocks is already known, potentially simplifying both the RTL synthesis and
place and route tasks.

All the foregoing comments distinguish synthesis to FPGAs from synthesis to
ASICs in general. The FPGA technologies themselves favor certain SystemVerilog
coding styles. For example, the following piece of SystemVerilog shows two ways of
describing a 5-to-1 multiplexer.

module Mux1(input a, b, c, d, e,
input [4:0] s, output logic y);

always_comb
case (s)

5’b00001 : y = a;
5’b00010 : y = b;
5’b00100 : y = c;
5’b01000 : y = d;
default : y = e;

endcase
endmodule

module Mux2(input a, b, c, d, e,
input [4:0] s, output wire y);

assign y = s[0] ? a : 1’bZ;
assign y = s[1] ? b : 1’bZ;
assign y = s[2] ? c : 1’bZ;
assign y = s[3] ? d : 1’bZ;
assign y = s[4] ? e : 1’bZ;
endmodule

These two models have the same functionality when simulated. If version 1
were synthesized to an FPGA, two CLBs would be needed. Version 2, on the other
hand, can be implemented using the three-state buffers that exist outside the CLBs.
Version 2, however, cannot be synthesized to a CPLD as the technology does not
support three-state logic, except at the periphery. Clearly, therefore, the choice of
architecture depends upon which technology is being used.

The two technologies have different limitations with respect to fan-outs. An-
tifuse technology has a fan-out limit of about 16 (one output can drive up to 16
inputs without degradation of the signal). CMOS SRAM technology has a higher
fan-out limit. In practice, this means that a design that can be synthesized easily to a
Xilinx FPGA cannot be synthesized to a CPLD without rewriting. For example, an

218 SystemVerilog Synthesis

apparently simple structure such as the following fragment cannot be synthesized
as it stands because the Enable signal is controlling 32 multiplexers.

logic [31:0] a, b;

always_comb
if (Enable)

a = b;
else

a = 0;

Instead, the Enable signal must be split into two using buffers, and each
buffered signal then controls half of the bus:

logic [31:0] a, b;
wire En0, En1;

buf b0 (Enable, En0);
buf b1 (Enable, En1);

always_comb
begin
if (En0)

a[15:0] = b[15:0];
else

a[15:0] = 0;
if (En1)

a[31:16] = b[31:16];
else

a[31:16] = 0;
end

A good synthesis tool should recognize the fan-out limits and automatically
insert buffers.

10.4 Behavioral Synthesis
In RTL synthesis, the design is specified in terms of register operations and trans-
formed automatically into gates and flip-flops. Behavioral synthesis takes the process
one stage further. The hardware to be synthesized is described in terms of an algo-
rithm, from which the registers and logic are derived. In principle, it is not necessary
to use a hardware description language for behavioral synthesis; indeed, subsets of
conventional programming languages such as C have been used. The major obstacle
to the widespread acceptance of behavioral synthesis appears to be the difficulty that
a hardware designer has in interpreting the output of a synthesis tool. The output of

10.4 Behavioral Synthesis 219

RTL synthesis, particularly when expressed in terms of FPGA netlists, can be very
difficult to interpret. This is even truer of behavioral synthesis, where the detailed
structure is entirely generated by the synthesis tool. With the decreasing cost of
silicon, however, it seems safe to predict that behavioral synthesis will become an
accepted design tool, in the same way that compilers for high-level programming
languages are now accepted, even though the machine code generated is largely
unintelligible.

This section shows, by example, how a behavioral synthesis tool might generate
a structural representation of a circuit from a high-level algorithmic description.

The following is a behavioral model of an infinite impulse response (IIR) filter.

module iir (input int in, output int out);

const int coeffa [0:5] = ’{25,50,75,150,300,600};
const int coeffb [0:4] = ’{-100,-125,-150,-175,-200};
parameter order = 5;

int input_sum = 0;
int output_sum = 0;
int delay [0:order] = ’{0,0,0,0,0,0};
always

begin
input_sum =in;
for (int j = 0; j <= order-1; j++)
input_sum = input_sum + (delay[j]*coeffb[j]/1024);

output_sum = (input_sum*coeffa[order]/1024);
for (int k = 0; k <= order; k++)
output_sum = output_sum + (delay[k]*coeffa[k]/1024);

for (int l = 0; l <= order-1; l++)
delay[l] = delay [l+1];

delay[order] = input_sum;
out = output_sum ;
#10ns;
end

endmodule

This is a behavioral description in the sense that the filter is described purely as
an algorithm. A C version of the algorithm would look very similar. A C version might
not include the 10 ns delay, but conversely, this is not RTL SystemVerilog, as there is
neither a clock nor a reset. If this description were used for RTL synthesis (assuming
the synthesis tool accepted the SystemVerilog), the resulting hardware would have
twelve 32-bit combinational multipliers and eleven 32-bit adders. This translates
to 12,640 full adders. The division by 1024 is simply a scaling operation and can

220 SystemVerilog Synthesis

be achieved by throwing away the 10 least significant bits from each multiplication
product. This operation is therefore effectively free.

The essential fact about behavioral synthesis is that it is possible to make design
decisions and to achieve a compromise between speed and size. In the IIR example,
it would be equally possible to implement the algorithm using 12,640 full adders and
complete the operation in one clock cycle, or to use one full adder and take 12,640
clock cycles to achieve the result. More sensibly, some implementation between
these two extremes might be sufficiently fast and sufficiently small to satisfy the
requirements of the final application.

It is not practical to demonstrate the principles of behavioral synthesis with the
fifth-order IIR filter. Instead, let us consider how a first-order filter might be built.
In order to know which operations can be done concurrently and which require
successive clock cycles, we need to know the dependency of each piece of data
on each other piece of data. To do this, the loops in the behavioral description
will first be expanded. We will ignore the division operations for the reason stated
previously.

input_sum = in + delay[0]*coeffb[0];
output_sum = input_sum*coeffa[1];
output_sum = output_sum + delay[0]*coeffa[0];
out = output_sum + delay[1]*coeffa[1];

Assignments are made to output_sum on the second and third lines. To distin-
guish between successive values of output_sum, the two values will be separated,
such that there is only one assignment to each variable in the algorithm. This is
known as single assignment form.

input_sum = in + delay[0]*coeffb[0];
output_sum0 = input_sum*coeffa[1];
output_sum1 = output_sum0 + delay[0]*coeffa[0];
out = output_sum1 + delay[1]*coeffa[1];

From this a data dependency graph can be constructed (Figure 10.9).
If the operations shown in Figure 10.9 were all performed in one clock cycle,

three adders and four multipliers would be needed. If it were decided, however, that
each multiplication and each addition takes one clock cycle, the data dependency
graph can be used to construct a schedule that shows when each operation can be
performed (Figure 10.10).

It can be seen that five clock cycles are required to perform the arithmetic
operations—the system is said to have a latency of five. This schedule is known
as an as soon as possible (ASAP) schedule because each operation is done as early

10.4 Behavioral Synthesis 221

+

*

* *

*+

+

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

output

input_sum

output_sum0

output_sum1

Figure 10.9 Data dependency graph.

as possible. Note that the sequence of operations is not the same as given by the
original SystemVerilog description. Equally, it is possible to schedule operations as
late as possible (ALAP) (Figure 10.11). This schedule also takes five clock cycles. If,
however, the resources were constrained to a single arithmetic unit, again using an
ALAP schedule, the number of cycles required increases (Figure 10.12).

+

*

*

* *

+

+

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

output

1

2

3

4

5

Cycle

Figure 10.10 ASAP schedule.

222 SystemVerilog Synthesis

+

*

* *

*+

+

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

output

1

2

3

4

5

Cycle

Figure 10.11 ALAP schedule.

+

*

*

*

*

+

+

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

output

1

2

3

4

5

Cycle

6

7

Figure 10.12 Resource constrained schedule.

10.4 Behavioral Synthesis 223

+

*

*

*

*

+

+

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

output

1

2

3

4

5

Cycle

Figure 10.13 Mapping of operations onto resources.

Given the assumption that the basic resources available are arithmetic units,
there are relatively few possible schedules for this example. With larger problems,
the number of possible schedules clearly increases. By limiting the available re-
sources, and hence the total area of the design, the latency, that is, the time taken to
complete an operation, is increased. Therefore, the synthesis tool can trade speed
against area by changing the schedule. Figure 10.13 shows how the operations can
be mapped onto particular resources. The three shaded groups each represent, a
resource used in different clock cycles, namely two multipliers and an adder.

The result of an operation is used in a subsequent clock cycle. Therefore, every
time a data arc crosses a clock boundary, a register must be inserted, as shown in
Figure 10.14.

Just as the arithmetic resources can be shared, so too can the registers be shared.
The sharing is achieved using multiplexers, which are assumed to be cheap (i.e.,
small) compared with the other resources. Hence, a possible hardware implemen-
tation of the schedule of Figure 10.14 is shown in Figure 10.15.

In Figure 10.14 and Figure 10.15, three registers are shown following one of
the multiplier units. This assumes that every register is loaded at each clock edge.
It would be equally valid to use enabled registers, which would reduce the num-
ber of registers. Whatever technique is used, the multiplexers and registers have
to be controlled. We have thus far discussed the derivation of the datapath part
of Figure 7.6 from a behavioral description. The controller part also needs to be
synthesized. In the example shown, this is relatively simple. There are five clock
cycles; hence, five states as shown in Figure 10.16.

224 SystemVerilog Synthesis

+

*

*

*

*

+

+

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

output

1

2

3

4

5

Cycle

R1 R2

R4

R3

R5 R6

R7 R8 R9

R10 R11

Figure 10.14 Schedule showing registers.

delay(0)
coeffa(1)

coeffb(0)
delay(0)

delay(1)
coeffa(0)

coeffa(1)

input

+

R1

R2/R7 R3/R6

R5/R9

R8/R11

R4/R10
output

Figure 10.15 Hardware implementation of a first-order filter.

10.5 Verifying Synthesis Results 225

R1 ← input
R2 ← delay(0) * coeffb(0)
R3 ← delay(0) * coeffa(0)

R4 ← R1 + R2
R5 ← R3
R3 ← delay(1) * coeffa(1)

R2 ← R4 * coeffa(1)
R8 ← R5
R5 ← R3

R4 ← R2 + R8
R8 ← R5

output ← R4 + R8

Figure 10.16 ASM chart of the IIR controller.

10.5 Verifying Synthesis Results
Synthesis should, by definition, produce a correct low-level implementation of a
design from a more abstract description. In principle, therefore, functional verifica-
tion of a design after synthesis should not be needed. For peace of mind, we might
wish to check that the synthesized design really does perform the same function as
the RTL description. Synthesis does, however, introduce an important extra factor
to a design—timing. An RTL design is effectively cycle-based. A task takes a certain
number of clock cycles to complete, but we do not really know how long each cycle
takes. After synthesis, the design is realized in terms of gates or other functional
blocks, and these can be modeled with delays. After placement and routing, we have
further timing information in the form of wiring delays, which can be significant
and which can affect the speed at which a design can operate.

It is possible, in principle, to verify a synthesized design by comparing it with
the original RTL design, using techniques such as model-checking. In practice,
such tools are limited to checking interfaces. Static timing analysis can give us

226 SystemVerilog Synthesis

information about delays between two points in a circuit, but needs to distinguish
between realizable signal paths and false paths that are never enabled in reality.
Similarly, a synthesis tool aims to meet timing constraints, but may not distinguish
between true and false paths. Therefore, sometimes the best way to verify the timed
behavior of a synthesized system is to simulate it.

One approach to checking a design at two levels of abstraction is to simulate
both versions at the same time and to compare the results. This is usually a bad
idea for two reasons. First, the size of the system to be simulated is at least twice
as large as one version in isolation, and therefore slower to execute. Second, there
will, as noted, be timing differences. Therefore, comparing responses may lead to
false warnings.

10.5.1 Timing Simulation
The major concern for simulation during RTL design is to verify the functionality.
The only timing consideration is whether a design functions correctly cycle-by-cycle.
After synthesis, two files will be generated: a netlist file and a timing file in SDF. The
netlist, as the name suggests, is a list of the cells that have been used to implement
the design. These cells are taken from a library supplied by the FPGA vendor or by
a silicon foundry. The cell library may consist of thousands of cells. Some are simply
variants on a function that have a higher drive for higher fan-outs. The functionality
of each cell can be expressed in terms of built-in gates or in terms of primitive
modules. (We will not describe primitivemodules here.) Normally, the netlist will
have been “flattened”—all the hierarchy of the design will have been removed—so
it is very difficult to understand the functionality of a design from the post-synthesis
netlist.

The SDF timing file contains point-to-point timing information for the cells and
the interconnect. This information can be extracted once the full placement and
routing of the design is complete. The cells themselves will have been characterized
by the builder of the cell library. SDF files contain three timing values for each path:
fast, typical, and slow. In general, the slow values are used because they represent the
worst-case behavior. Under some circumstances, fast values may also be simulated
in order to check that flip-flop setup and hold times are not violated.

Within a netlist file, delay times are represented using specify blocks, not
by the delay parameters of gate models. For example, the circuit of Figure 3.1 is
modeled by the following netlist (reproduced from Chapter 3).

module ex1 (output wire y; input wire a, b, c);
wire d, e, f;
not g1 (d, c);

10.5 Verifying Synthesis Results 227

and g2 (e, a, c);
and g3 (f, d, b);
or g4 (y, e, f);

endmodule

Instead of giving delay parameters to each gate, the delays between each input
and the output might be given by a specify block as follows.

specify
(a => y) = 9ns;
(b => y) = 10ns;
(c => y) = 12ns;

endspecify

(The specify block is included within the module.) When the delays are
specified in an SDF file, the delay values are all set to zero in the netlist file.

specify
(a => y) = 0;
(b => y) = 0;
(c => y) = 0;

endspecify

Thus, the timing simulation associates values from the SDF file with particular
paths. At the time of simulation, fast, typical, or slow values are chosen for the entire
circuit. We will look again at specifyblocks in Chapter 13, when considering setup
and hold times.

Static timing analysis (STA) uses the same timing information, but delays
through entire paths are calculated from the cell and interconnect data. This is
a little more complex than simply summing delays as the switching characteris-
tics of gates have to be taken into account. While STA is much faster than timing
simulation, care has to be taken with “false paths,” as noted previously.

Whichever approach is used, the aim of timing analysis is to verify that a design
will work at the intended clock speed. Thus, the analysis tends to be pessimistic. If
a design does not meet its timing specification, it will have to be re-synthesized. As
noted earlier in this chapter, this process is controlled using synthesis constraints.
Optimizing a design to make it faster can result in its becoming larger. While this
may decrease logic delays, wiring delays can increase. Therefore, it may be difficult
to force a design to converge to acceptable timing constraints. Timing simulation
and STA clearly play a big role in this cycle and therefore have to be efficient.

228 SystemVerilog Synthesis

Summary
SystemVerilog was conceived as a description language, but has been widely adopted
as a specification language for automatic hardware synthesis. A number of tools
exist for RTL synthesis, but behavioral synthesis tools are appearing. Because of
its origins, SystemVerilog has some features that are not synthesizable to hardware.
The rules for the inference of latches and flip-flops are well defined. Synthesis
constraints may be stated in terms of SystemVerilog attributes or as separate inputs
to the synthesis tool. To get the most out of an FPGA may require careful writing
of the SystemVerilog code. The important concepts behind behavioral synthesis
are scheduling and binding. Verification of synthesized designs can be done by
comparing pre- and post-synthesis simulations. The detailed timing of designs can
be modeled using timing simulation or STA.

Further Reading
Despite the definition of a synthesizable subset of Verilog, each synthesis tool accepts
a slightly different subset of Verilog and SystemVerilog and interprets poorly written
SystemVerilog in different ways. It therefore pays to read the user manuals of tools
with some care. The Web sites of FPGA manufacturers include SystemVerilog style
guides showing what can and cannot be implemented.

de Micheli [6] covers both high-level behavioral synthesis and low-level opti-
mization in his book.

Exercises
10.1 Explain, with examples, what is meant by a constraint in RTL synthesis.

10.2 Write a model of an eight-state counter as a SystemVerilog state machine,
with a clock and reset inputs, which outputs a ready flag when the counter is
in the initial state. Use the enum_encoding attribute to specify that the state
machine should be implemented as a Johnson counter.

10.3 The following listing shows a description of a simple state machine in
SystemVerilog. If this state machine were synthesized using an RTL synthesis
tool, the resulting hardware would give different simulated behavior from the
original RTL description. Explain why this should be so.

module fsm (input logic clk, a, output logic y);

typedef enum {s0, s1, s2} statetype;

Exercises 229

statetype currentstate, nextstate = s0;

always @(posedge clock)
currentstate <= nextstate;

always @(currentstate)
case (currentstate)

s0: if (a)
nextstate = s1;

else
nextstate = s2;

s1: begin
y = ’1;
nextstate = s0;
end

s2: if (a)
nextstate = s2;

else
nextstate = s0;

endcase

endmodule

10.4 Rewrite the SystemVerilog model of Exercise 10.3 such that, when
synthesized, the resulting hardware consists only of D flip-flops, with
asynchronous resets and combinational next state and output logic.

10.5 The following listing shows three SystemVerilog processes. Describe the
hardware that should be generated from each of these process models by a
synthesis tool.

always @(x, y)
begin: A

if (y)
qa = x;

else
qa = ’0;

end

always @(x, y)
begin: B

if (y)
qb = x;

end

always @(y)

230 SystemVerilog Synthesis

begin: C
if (y)

qc = x;
end

10.6 Explain the terms scheduling and binding in the context of behavioral
synthesis.

10.7 The following sequence of operations is part of a cube root solution routine:

a = x * x;
a = 3 * a;
b = y / a;
a = 2 * x;
a = a / 3;
c = a - b;

Convert this sequence to single assignment form and hence construct a data
dependency graph. Assuming that each arithmetic operation takes exactly
one clock cycle, derive an unconstrained ALAP schedule.

10.8 Derive a constrained schedule for the routine of Exercise 10.7 and hence
design a datapath implementation of this part of the system, assuming that
one multiplier, one divider, and one subtracter are available.

11Testing Digital Systems

In the course of manufacture, defects may be introduced into electronic systems.
Systems may also break during use. Defects may not be easy to detect. In this chapter
we discuss the importance of testing, the types of defects that can occur, and how
defects can be detected. We describe procedures for generating tests and how the
effectiveness of tests can be assessed.

11.1 The Need for Testing
No manufacturing process can ever be perfect. Thus, real electronic systems may
have manufacturing defects such as short circuits, missing components, or damaged
components. A manufacturer needs to know if a system (whether at the level of a
board, an IC, or a whole system) has a defect and therefore does not work in
some way. While a manufacturer does not want to sell bad systems, equally he
or she would not want to reject good systems. Therefore, the need for testing is
economic.

We also need to distinguish between the ideas of verification in which the design
of a piece of hardware or software is checked and of testing in which it is assumed
that the design is correct, but that there may be manufacturing faults. This chapter
is about the latter concept, but the inclusion of design for test structures may help
in verifying and debugging a design.

231

232 Testing Digital Systems

There are, in general, two approaches to testing. We can ask whether the system
works correctly (functional testing) or we can ask whether the system contains a fault
(structural testing). These two approaches might at first appear to be equivalent,
but in fact the tactic we adopt can make a profound difference to how we develop
tests and how long those tests take to apply. Functional testing can imply a long
and difficult task because all possible states of a system have to be checked. Struc-
tural testing is often easier, but is dependent upon the exact implementation of a
system.

11.2 Fault Models
An electronic system might contain a large number of possible defects as a result
of the manufacturing process. For example, the printed circuit board could have
breaks in connections because of bad etching, stress, or bad solder joints. Equally,
there may be short circuits resulting from the flow of solder. The components on
a printed circuit board (PCB) may be at fault—so-called “population defects”—
caused by having the wrong components, wrongly inserted components, or omitted
components. The components themselves may fail because the operating conditions
exceed the component specifications or because of electromagnetic interference
(EMI) or heat.

Similar defects can occur in integrated circuits. Open circuits may arise from
electromigration (movement of metal atoms in electromagnetic fields), current over-
stress, or corrosion. Silicon or oxide defects, mask misalignment, impurities, and
gamma radiation can cause short circuits and incorrect transistor operation. “Latch-
up,” caused by transient currents, forces the output of a CMOS gate to be stuck at
a logic value. In memory circuits, there may be data corruption because of alpha
particles or EMI.

Clearly, to enumerate and check for every possible defect in an electronic system
would be an enormous task. Therefore, a distinction is made between physical
defects and electrical faults. The principle of fault modeling is to reduce the number
of effects to be tested by considering how defects manifest themselves. A physical
defect will manifest itself as a logical fault. This fault may be static (e.g., shorts,
breaks), dynamic (components out of specification, timing failures), or intermittent
(environmental factors).

The relative probabilities of faults that appear during tests in manufacturing
are shown in Figure 11.1. Dynamic faults may be further divided into timing faults
(28%) and driver faults (21%). Timing faults and intermittent faults may be due to
poor design. It is difficult to design test strategies for such faults.

11.2 Fault Models 233

Static Faults 50%

Dynamic Faults 49%

Intermittent Faults 1%

Figure 11.1 Fault probabilities.

11.2.1 Single-Stuck Fault Model
Static faults are usually modeled by the stuck fault model. Many physical defects
can be modeled as a circuit node being either stuck at 1 (s-a-1) or stuck at 0 (s-a-0).
Other fault models include stuck open and stuck short faults. Programmable logic
and memory have other fault models.

The single-stuck fault model (SSFM) assumes that a fault directly affects only
one node and that the node is stuck at either 0 or 1. These assumptions make test
pattern generation easier, but the validity of the model is questionable. Multiple
faults do occur, and multiple faults can theoretically mask each other. On the other
hand, the model appears to be valid most of the time. Hence, almost all test pattern
generation relies on this model. Multiple faults are generally found with test patterns
for single faults.

11.2.2 PLA Faults
PLAs consist not of gates but of AND and OR logic planes, connected by fuses (or
anti-fuses). Thus, faults are likely to consist of added or missing fuses, not stuck
faults. For example, Figure 11.2 shows part of a PLA, where the output Z is the
logical OR of three intermediate terms, P , Q, R.

Each of the intermediate terms is the AND of the three inputs, A, B , C or its
inverse:

Z = P + Q + R
P = B · C̄
Q = A · C
R = Ā · B̄ · C̄
S = Ā · C

234 Testing Digital Systems

A B C Z

P

Q

R

S

F1 F2 F3 F4

Figure 11.2 PLA fault models.

• Fault F1 is an additional connection causing Q to change from A · C to
A · B · C . On a Karnaugh map this represents a decrease in the number of 1s
circled; therefore, this can be thought of as a shrinkage fault.

• Fault F2 is a missing connection, causing R to grow from Ā · B̄ · C̄ to Ā · B̄ .

• Fault F3 causes the appearance of term S in Z .

• Fault F4 causes the disappearance of term P from Z .

11.3 Fault-Oriented Test Pattern Generation
Having decided that defects in a system can be modeled as electrical faults, we
then need to determine whether any of these faults exist in a particular instance of
a manufactured circuit. If the circuit were built from discrete transistors or gates,
this task could, in theory, be achieved by monitoring the state of every node of the
circuit. If the system is implemented as a packaged integrated circuit, this approach
is not practical. We can only observe the outputs of the system, and we can only
control the inputs of the system. Therefore, the task of test pattern generation is
that of determining a set of inputs to unambiguously indicate if an internal node
is faulty. If we only consider combinational circuits for the moment, the number
of possible input combinations for an n-input circuit is 2n. We could apply all 2n

inputs, in other words, perform an exhaustive functional test, but in general we
want to find the minimum necessary number of input patterns. It is possible that,
because of the circuit structure, certain faults cannot be detected. Therefore, it is
common to talk about the testability of a circuit.

11.3 Fault-Oriented Test Pattern Generation 235

Testability can be a somewhat abstract concept. One useful definition of testa-
bility breaks the problem into two parts:

1. Controllability—Can we control all the nodes to establish if there is a fault?

2. Observability—Can we observe and distinguish between the behavior of a
faulty node and that of a fault-free node?

In order to generate a minimum number of test patterns, a fault-oriented test
generation strategy is adopted. In the pseudo-code that follows, a test is one set of
inputs to a (combinational) circuit. The overall strategy is as follows:

• Prepare a fault list (e.g., all nodes stuck-at 0 and stuck-at 1)

• Repeat

• Write a test

• Check fault cover (one test may cover more than one fault)

• Delete covered faults from list

• until the fault cover target is reached

Test pattern generation (writing a test) may be random or optimized. This will
be discussed in more detail later. One test may cover more than one fault, and often
faults are indistinguishable. Again, this is discussed later.

If we simply want a pass/fail test, once we have found a test for a fault we
can remove faults from further consideration. If we want to diagnose a fault (for
subsequent repair), we probably want to find all tests for a fault to deduce where
the fault occurs. The fault cover target may be less than 100%. For large circuits,
the time taken to find all possible tests may be excessive. Moreover, the higher the
cover, the greater the number of tests and hence the cost of applying the test.

11.3.1 Sensitive Path Algorithm
The circuit of Figure 11.3 has seven nodes. Therefore, there are 14 stuck faults:

A/0, A/1, B/0, B/1, C/0, C/1, D/0, D/1, E/0, E/1, F /0, F /1, Z/0, Z/1

where A/0 means A stuck-at-0, etc.
To test for A/0, we need to set A to 1 (the fault-free condition—if A were at 0,

we would not be able to distinguish the faulty condition from the fault-free state).
The presence or otherwise of this fault can only be detected by observing node Z .

236 Testing Digital Systems

A

B

C

D

E

F

Z

Figure 11.3 Example circuit for test generation.

We now have to determine the states of the other nodes of the circuit that allow the
state of A to be deduced from the state of Z . Thus, we must establish a sensitive
path from A to Z . If node B is 0, E is 1 irrespective of the state of A. Therefore, B
must be set to a logic 1. Similarly if F is 1, Z is 1, irrespective of E; hence, F must
be 0. To force F to 0, either C or D or both must be 0.

Thus, if the fault A/0 exists, E is 1 and Z is 1. If the fault does not exist, E is 0
and Z is 0.

We can conclude from this that a test for A/0 is A = 1, B = 1, C = 0, D = 1,
for which the fault-free output is Z = 0. This can be expressed as 1101/0. Other
tests for A/0 are 1110/0 and 1100/0. Therefore, there is more than one test for the
fault A/0.

Let us now consider a test for another fault. To test for E/1 requires that F = 0
to make E visible at Z . Therefore, C or D or both must be 0. To make E = 0
requires that A = B = 1. So, a test for E/1 is 1101/0. This is the same test as for
A/0. So, one test can cover more than one fault.

The sensitive path algorithm therefore consists of the following steps.

1. Select a fault.

2. Set up the inputs to force the node to a fixed value.

3. Set up the inputs to transmit the node value to an output.

4. Check that the input node values for steps 2 and 3 are consistent.

5. Check for coverage of other faults.

The aim is to find the minimum number of tests that cover all the possible faults,
although 100% fault coverage may not be possible.

Fan-out and reconvergence can cause difficulties for this algorithm. Improved
algorithms (D-algorithm, PODEM) use similar techniques but overcome these
drawbacks.

11.3 Fault-Oriented Test Pattern Generation 237

A

C

B

D

E

F

Z

Figure 11.4 Circuit with redundancy.

11.3.2 Undetectable Faults
Consider the function

Z = A · C + B · C̄

To avoid hazards, the redundant term may be included, as shown in Figure 11.4.
This is effectively the same as Figure 2.17.

Z = A · C + B · C̄ + A · B

We will now try to find a test for F/0. This requires that F be set to 1. Hence,
A = B = 1. To transmit the value of F to Z means that D = E = 0 (otherwise Z
would be 1, irrespective of F). For E to be 0, B must be 0 and/or C must be 1.
Similarly, for D to be 0, A must be 0 and/or C must be 0. These three conditions
are inconsistent, so no test can be derived for the fault F/0.

There are three possible responses to this. It must be accepted that the circuit
is not 100% testable; the redundant gate must be removed, risking a hazard; or the
circuit must be modified to provide a control input for testing purposes to force D
to 0 when A = C = 1.

In general, untestable faults are due to redundancy. Conversely, redundancy in
combinational circuits will mean that those circuits are not fully testable.

11.3.3 The D Algorithm
The simple sensitized path procedure does not handle reconvergent paths ade-
quately. For example, consider the circuit of Figure 11.5. To find a test for B/0

238 Testing Digital Systems

A

B

C

E

F

Z

Figure 11.5 Example circuit for the D algorithm.

requires that B be set to 1. To propagate the state of B to D requires that A is 1,
and to propagate D to Z requires that E is 0. The only way that E can be at 0 is if
B and C are both 1, but this is not the case when B/0. Apparently, therefore, the
sensitive path algorithm cannot find a test for B/0. In fact, 111/0 is a suitable test
because under fault-free conditions, D, E, and Z are all at logic 0; when B/0, all
three nodes are at logic 1.

The D algorithm overcomes that problem by introducing a 5-valued algebra:
{0, 1, D, D̄, X}. D represents a node that is logic 1 under fault-free (normal)
conditions and logic 0 under faulty conditions. D̄ represents a normal 0, and a
faulty 1. X is an unknown value. The values of D and D̄ are used to represent the
state of a node where there is a fault and also the state of any other nodes affected
by the fault.

The D algorithm works in the same way as the sensitive path algorithm. If step
4 fails, the algorithm backtracks. In both steps 2 and 3, it is possible that more
than one combination of inputs generates the required node values. If necessary, all
possible combinations of inputs are examined.

Table 11.1 shows the inputs required to establish a fault at an internal node, to
transmit that fault to an output, to generate a fixed value (to establish or propagate
a fault), and finally how fault conditions can reconverge. In all cases, the inputs A
and B are interchangeable. The table can be extended to gates with three or more
inputs. The symbol “–” represents a “don’t care” input.

To see how the D notation can be used, consider the circuit of Figure 11.6. To
test for A/0, node A is first given a value D, which can be propagated via node H
or node G. To propagate the D to node H, node B must be 1. Node I then has the
value D̄. To propagate this D̄ to K requires F to be 0 and to propagate the value
to Z means J must be 1. If F is 0 and J is 1, G must be 1. Therefore, nodes A and
E must both be 1. At this point we hit an inconsistency as node A has the value D.
We have to return to the last decision made, which in this case was the decision to
propagate the value of A through to H.

11.3 Fault-Oriented Test Pattern Generation 239

Table 11.1 Truth Tables for the D Algorithm

AND OR NAND NOR NOT

A B Z A B Z A B Z A B Z A Z

Establish 1 1 D 0 0 D̄ 1 1 D̄ 0 0 D 1 D̄
fault-sensitive 0 – D̄ 1 – D 0 – D 1 – D̄ 0 D
condition

Transmit fault D 1 D D 0 D D 1 D̄ D 0 D̄ D D̄
D̄ 1 D̄ D̄ 0 D̄ D̄ 1 D D̄ 0 D D̄ D

Generate fixed 1 1 1 1 – 1 1 1 0 1 – 0 1 0
value 0 – 0 0 0 0 0 – 1 0 0 1 0 1

Reconvergence D D D D D D D D D̄ D D D̄
D̄ D̄ D̄ D̄ D̄ D̄ D̄ D̄ D D̄ D̄ D
D D̄ 0 D D̄ 1 D D̄ 1 D D̄ 0

The alternative is to propagate the D at A to G. Thus, E must be 1. To propagate
the value to J, F must be 0 and to propagate to Z , K must be 1. Hence, I must
be 1, hence E must be 0. As A is already assigned, B must be 0. This is consistent
with F being 0 and C may be either 1 or 0.

The D algorithm, as presented here, requires further refinement before it can
be implemented as an EDA program. In particular, the rules for detecting inconsis-
tencies require more detail. Table 11.2 shows what happens when two fault-free or
faulty values are propagated by different routes to the same node.

The D algorithm is an algorithm in the true sense of the word—if a solution
exists, the D algorithm will find it. The search for a solution can, however, be

A

B

C

E

H

F

G

I

K

J

Z

Figure 11.6 Example circuit for the D algorithm.

240 Testing Digital Systems

Table 11.2 Intersection Rules for the D
Algorithm

∩ 0 1 X D D̄

0 0 φ 0 ψ ψ

1 φ 1 1 ψ ψ

X 0 1 X D D̄
D ψ ψ D μ λ

D̄ ψ ψ D̄ λ μ

φ = inconsistent logic values
ψ = inconsistency between logic values and

fault values
μ = allowed intersection between fault values
λ = inconsistent fault values

very time-consuming. If necessary, every possible combination of node values will
be examined. Subsequent test pattern generation algorithms have attempted to
speed up the D algorithm by improving the decision making within the algorithm.
Examples include 9-V which uses a nine-valued algebra and PODEM.

11.3.4 PODEM
The PODEM algorithm attempts to limit the decision making, and hence the time
needed for a decision. Initially, all the inputs are set to X (unknown). Arbitrary
values are then assigned to the inputs, and the implications of these assignments are
propagated forward. If either of the following propositions is true, the assignment
is rejected:

1. The node value of the fault under consideration has identical faulty and
fault-free values.

2. There is no signal path from a net with a D or D̄ value to a primary output.

We will use PODEM on the circuit of Figure 11.6 to develop a test for I/1.
Initially, all nodes have an X value.

1. Set A = 0. Fails—proposition 1 (I would be 1).

2. Set A = 1. OK.

3. Set B = 0. Fails—proposition 1.

4. Set B = 1. OK. H = D, I = D̄.

11.3 Fault-Oriented Test Pattern Generation 241

5. Set C = 0. OK. F = 0, K = D̄.

6. Set E = 0. Fails—proposition 2 (G = 0, J = 0, Z = 0).

7. Set E = 1. OK. G = 1, J = 1, Z = D̄.

Therefore, a test for I/1 is 1101/0

11.3.5 Fault Collapsing
In the example of Figure 11.3, the test for A/0 (the input to a NAND gate) was the
same as the test for E/1 (the output of that NAND gate). The same test can be used
to detect B/0. These three faults are indistinguishable {A/0, B/0, E/0}. Similarly,
a test for an input of a NAND gate being stuck at 1 will also detect if the output
is stuck at 0. Two different tests are needed, however, for A/1 and B/1. Hence,
these faults are not indistinguishable, but an input stuck at 1 is said to dominate the
output stuck at 0 (A/1 → E/0). The set of rules for fault indistinguishability and
dominance for two input (A, B), single output (Z) gates and the inverter are shown
in Table 11.3.

These rules can be used to reduce a fault list. These rules, however, do not
apply to fan-out nodes, which must be omitted from any simplification procedure.
If we apply these rules to the 14 faults of the circuit of Figure 11.3, we can see that
we have two sets of equivalent faults: {A/0, B/0, E/1, F /1, Z/1} and {C/0, D/0,
F /0} and the following fault dominances: A/1 → E/0, B/1 → E/0, E/0 → Z/0,
F /0 → Z/0, C/1 → F /1, D/1 → F /1. As we only need to test for one fault in
each equivalent set and for the dominant faults, we only need to derive tests for the
following faults: A/1, B/1, C/1, D/1, and C/0. The fault list is cut from 14 to 5 faults,
simplifying the fault generation task. Note that we have not lost any information by
doing this—we cannot tell by observing node Z whether a fault in the circuit is one
of the five listed or a fault equivalent to or dominated by one of those faults.

Table 11.3 Fault Collapsing Rules

Type of Gate Indistinguishable Faults Fault Dominance

AND {A/0, B/0, Z/0} A/1, B/1 → Z/1
OR {A/1, B/1, Z/1} A/0, B/0 → Z/0
NAND {A/0, B/0, Z/1} A/1, B/1 → Z/0
NOR {A/1, B/1, Z/0} A/0, B/0 → Z/1
NOT {A/0, Z/1} {A/1, Z/0}

242 Testing Digital Systems

A

B

C

D

E

F

G

Figure 11.7 Example circuit for fault simulation.

11.4 Fault Simulation
One test pattern can be used to find more than one potential fault. For example,
suppose we wish to detect if node E is stuck at 0 in the circuit of Figure 11.7.
E/0 dominates G/0 and is equivalent to A/0 and B/0. In all these cases, G will be
1 normally and 0 in the presence of one of these faults. Hence, the input pattern
A = 1, B = 1, C = 0, D = 0 can be used to detect four possible faults. As there
are seven nodes in the circuit, there are 14 possible stuck-at faults. This pattern
covers four faults, and it can be shown that of the 16 possible input patterns, six are
sufficient to detect all the possible stuck-at faults in the circuit.

It is also generally true that a fault may be covered by more than one pattern.
For instance, E/1 can be found by attempting to force E to 0. This can be achieved
by setting (a) A = 1, B = 0, (b) A = 0, B = 1, or (c) A = 0, B = 0; in all cases,
C = 0, D = 0. Thus, there are three possible patterns for detecting E/1. Note too
that pattern (a) also covers B/1 and G/1, (b) covers A/1 and G/1, and (c) covers
G/1. To detect all the faults in the circuit we need to use both A = 1, B = 0, C = 0,
D = 0 and A = 0, B = 1, C = 0, D = 0 as these are the only patterns that detect B/1
and A/1, respectively. We are, however, applying two patterns that can detect E/1
and G/1. Having found one pattern that detects these two faults, we can drop the
faults from further consideration. In other words, in applying the second test A = 0,
B = 1, C = 0, D = 0, we forget about E/1 and G/1 as we already have a pattern
that detects them. We could equally decide not to drop a fault when a suitable
test pattern is found, in order to try to distinguish between apparently equivalent
faults.

The object of fault simulation is, therefore, to assess the fault coverage of test
patterns by determining whether the presence of a fault would cause the outputs of
the circuit to differ from the fault-free outputs, given a particular input pattern.

11.4 Fault Simulation 243

The simplest approach to fault simulation is simply to modify the circuit to
include each fault, one at a time, and to re-simulate the entire circuit. As the single-
stuck fault model assumes that only one fault can occur at a time and that each
node of the circuit can be stuck at 1 and at 0, this approach, known as serial fault
simulation, will require twice as many simulation runs as there are nodes, together
with one simulation for the fault-free circuit. This technique is clearly expensive in
terms of computer power and time, and three main alternatives have been suggested
to make fault simulation more efficient. We will show how two of these approaches
can be implemented in a simulator.

11.4.1 Parallel Fault Simulation
If we use two-state logic, one bit is sufficient to represent the state of a node.
Therefore, one computer word can represent the state of several nodes or the state
of one node under several faulty conditions. For instance, a computer with a 32-bit
word length can use one word to represent the state of a node in the fault-free circuit
together with the state of the node when 31 different faults are simulated. Each bit
corresponds to the circuit with one fault present. The same bit is used in each word
to represent the same version of the circuit. The fault-free circuit must always be
simulated as it is important to know whether a faulty circuit can be distinguished
from the fault-free circuit. If more faults are to be simulated than the number of bits
in a word, the fault simulation must be completed in several passes, each of which
includes the fault-free circuit.

Instead of simulating the circuit by passing Boolean values, words are used, so
the state of each gate is evaluated for each fault modeled by a bit of the input signal
words; hence, the name parallel fault simulation. Because words are passed instead
of Boolean values, the event scheduling algorithm treats any change in a word value
as an event. Thus, gates may be evaluated for certain versions of the circuit even if
the input values for that version remain unchanged.

The circuit of Figure 11.7 has seven nodes, and hence 14 possible stuck-at faults
(Table 11.4). Thus, 15 bits are needed for a parallel fault simulation. The word val-
ues of each node for the input pattern A = 1, B = 1, C = 0, D = 0 are shown later.
As can be seen, this pattern, as noted earlier, normally sets G to 1, but for faults A/0,
B/0, E/0, and G/0, the output is 0, and therefore these faults are detected by that
pattern.

There are several obvious disadvantages to parallel fault simulation. First, the
number of faults that can be simulated in parallel is limited to the number of bits
in a word. If more than two states are used—in other words if a state is encoded
using two or more bits—the possible number of parallel faults is further reduced.

244 Testing Digital Systems

Table 11.4 Parallel Fault Simulation of the Circuit of Figure 11.7

Bit A B C D E F G

0 – 1 1 0 0 1 0 1
1 A/0 0 1 0 0 0 0 0
2 A/1 1 1 0 0 1 0 1
3 B/0 1 0 0 0 0 0 0
4 B/1 1 1 0 0 1 0 1
5 C/0 1 1 0 0 1 0 1
6 C/1 1 1 1 0 1 1 1
7 D/0 1 1 0 0 1 0 1
8 D/1 1 1 0 1 1 1 1
9 E/0 1 1 0 0 0 0 0

10 E/1 1 1 0 0 1 0 1
11 F /0 1 1 0 0 1 0 1
12 F /1 1 1 0 0 1 1 1
13 G/0 1 1 0 0 1 0 0
14 G/1 1 1 0 0 1 0 1

As has been noted, every version of a gate is scheduled and re-evaluated whenever
one of the versions of an input changes. This can be very inefficient as a significant
number of null events are likely to be processed. Moreover, if the purpose of the
fault simulation is simply to detect whether any of the given test patterns will detect
any of the faults, it is desirable to drop a fault from further consideration once it has
proved possible to distinguish the behavior caused by that fault from the normal,
fault-free behavior. Faults cannot be dropped in parallel fault simulation, or per-
haps more accurately, the dropping of a fault is unlikely to improve the efficiency of
the simulation as the bits corresponding to that fault cannot be used for any other
purpose.

11.4.2 Concurrent Fault Simulation
If only the differences between the fault-free simulation and the faulty simulations
are maintained, constraints such as word size need not apply. On the other hand, the
evaluation of gates would be made more complex because these lists of differences
must be manipulated. Concurrent fault simulation maintains fault lists, in the form
of those gates that have different inputs and outputs in the faulty circuit from the
equivalent gates in the fault-free circuit. The manipulation of fault lists thus consists
of evaluating input signals, in exactly the same way as is done for the fault-free
circuit, and checking to see if the output differs from the fault-free circuit.

11.4 Fault Simulation 245

E0

E1

G0

G1

E2

E3

G2

G3

E4

F0

G4

G5

F1

F2

G6

G7

F3

F4

G8

G9

G10

A = 1
B = 1

E = 1
G = 1

A/1
1 1 E/0

0
0

1
B/1

1 1
F/0 1

A/0
1 0 1

0
G/0

1
B/0

0 E/1
0 1

C = 0
D = 0 F = 0

1
F/1 1

C/1
0

1 1
0 G/1

0
D/1

1

C/0
0

0

0
D/0 0

E3
0 0

E4
0

0

1
F1

1

1
F2

1

Figure 11.8 Concurrent fault simulation of the circuit of Figure 11.7.

Figure 11.8 shows the circuit with the fault lists included for the input A = 1,
B = 1, C = 0, D = 0. All the stuck faults for all four inputs are listed, together with
the stuck faults for the internal nodes E and F and the output node G. The stuck
faults for E and F are only listed once. To distinguish the faulty versions of the
circuit from the fault-free version, the gates are labeled according to their output
nodes, together with a number. Gate 0 is always the fault-free version. A gate in
the fault list is only passed to a gate connected to the output if the faulty value is
different from the fault-free value. Thus, E3, E4, F 1, and F 2 appear as inputs to
gates in the fault list for G, causing faults G7, G8, G9, and G10, respectively. As
with parallel fault simulation, it can be seen that for this example, G1, G3, G7, and
G8, representing E/0, G/0, A/0, and B/0, respectively, have different outputs from
G0 and are therefore detected faults.

To see why concurrent fault simulation is more efficient than parallel fault
simulation, suppose that A now changes from 1 to 0. This would cause E0, E2, and
E4 to be evaluated. E1 and E3 would not be evaluated because they both model
stuck faults on A. Now, E0 is at 0, as are E2, E3, and E4; E1 is at 1. The OR gate,

246 Testing Digital Systems

F , and its fault list would not be re-evaluated as neither C nor D change. As faults
E3 and E4 are now the same as E0, the corresponding faults in G, G7, and G8,
are removed from the fault list and a fault corresponding to E1, say G11, is now
inserted. Now gate G is evaluated, as E has changed, and faults G2, G3, G5, G6,
G9, G10, and G11 are evaluated.

It can be seen from Figure 11.8 that, even with this small number of gates,
the fault list for G has 10 elements. In practice, the fault lists can be significantly
simplified with a little pre-processing of the circuit. It has already been noted that
one test can cover a number of faults, and it is possible, in many cases, to deduce
that some faults are indistinguishable and that tests for certain faults will always
cover certain other faults. The circuit has seven nodes and 14 stuck faults, but it
has been shown that only tests for five faults—A/0, C/0, D/0, A/1 and B/1—are
needed and that any other faults are covered by those tests. If this pre-processing
is applied, faults E4, F 1, F 2, G1, G2, G3, G4, G5, and G6 can be eliminated,
and G8, G9, and G10 are in turn removed, reducing the fault list for G to one
element, G7.

Concurrent fault simulation allows efficient selective trace and event schedul-
ing to be used, together with the full range of state and delay models. The major
disadvantage is that a significant amount of list processing must be done to propagate
faults through the circuit.

The third approach, deductive fault simulation, offers a very similar perfor-
mance to concurrent fault simulation.

Summary
The principles of digital testing have been introduced. Defects are characterized as
logical faults. Test pattern generation algorithms have been described. Parallel and
concurrent fault simulation algorithms have also been discussed.

Further Reading
Abramovici, Breuer and Friedman [3] is a very good introduction to fault modeling,
test generation, and fault simulation. Also recommended are the books by Wilkins
[28] and Miczo [15]. New fault models and algorithms are still being developed,
with particular emphasis on delay effects and on sequential systems. IEEE Design
and Test of Computers provides a quarterly update on developments.

Exercises 247

Exercises
11.1 Explain the difference between structural and functional testing.

11.2 What assumptions are made by the SSFM?

11.3 Write down the stuck-at-fault list for the circuit shown in Figure 11.9.
Derive tests for A/1 and A/0 and determine which other faults these tests
cover. Show that it is not possible to derive a test for G/0.

&

&

&

&

&

≥1

A

B

C

D

E

F

G

H

I

J

Figure 11.9 Circuit for Exercises 11.3 and 11.4.

11.4 Suggest a test pattern to determine if nodes H and I in Figure 11.9 are
bridged together. You should assume that a bridging fault may be modeled
as a wired-OR; that is, if either wire is at logic 1, the other wire is also pulled
to a logic 1.

11.5 A positive-edge-triggered D-type flip-flop is provided with an active-low
asynchronous clear input, and has only its Q output available. By
considering the functional behavior of the flip-flop, develop a test sequence
for this device for all single-stuck faults on inputs and outputs.

11.6 Describe the four types of crosspoint fault that can occur in a PLA
consisting of an AND plane and an OR plane.

11.7 The AND and OR planes of a PLA can be thought of as two NAND planes.
What is the minimal set of test patterns required to test an n-input NAND
gate?

248 Testing Digital Systems

X

Z

Clock

Q

Q

D

Q D

Figure 11.10 Circuit for Exercise 11.8.

11.8 Write down a stuck-fault list for the circuit in Figure 11.10. How, in
principle, would a test sequence for this circuit be constructed?

11.9 The circuit shown in Figure 11.11 is an implementation of a state machine
with one input and one output. Derive the next state and output equations

A

P

P

Q

Q

&

&

&

&

≥1

≥1

&

1

Z

Node X

P+

Q+

Figure 11.11 Circuit for Exercise 11.9.

Exercises 249

and hence show that a parasitic state machine exists, in addition to the
intended state machine. Assuming that the initial state of the flip-flops is
P = Q = 0, suggest a sequence of input values at A that will cause the
output, Z, to have the following values on successive clock cycles: 0110.
Hence, show that this sequence of input values can be used to test whether
node X is stuck at 0.

11.10 Explain the difference between parallel and concurrent fault simulation.

A

B

C

D

E

F

G

Figure 11.12 Circuit for Exercise 11.11.

11.11 In the circuit of Figure 11.12, A = 1, B = 1, C = 1, D = 0. Derive the fault
lists as they would be included in a concurrent fault simulator, assuming
that each of the nodes can be stuck at 1 or 0. Show that the fault lists may be
significantly simplified if redundant and dominated faults are removed in a
pre-processing step.

This page intentionally left blank

12Design for Testability

As noted in the previous chapter, testability for a circuit such as that shown in
Figure 12.1 can be expressed in terms of:

• Controllability—the ability to control the logic value of an internal node from
a primary input.

• Observability—the ability to observe the logic value of an internal node at a
primary output.

The previous chapter discussed methods for finding test patterns for combi-
national circuits. The testing of sequential circuits is much more difficult because
the current state of the circuit as well as its inputs and outputs must be taken into
account. Although in many cases it is possible, at least in theory, to derive tests for
large complex sequential circuits, in practice it is often easier to modify the design
to increase its testability. In other words, extra inputs and outputs are included to
increase the controllability and observability of internal nodes.

Testability can be enhanced by ad hoc design guidelines or by a structured design
methodology. In this chapter we discuss general ad hoc principles for increasing
testability, then look at a structured design technique—the scan path. In the third
section, we will see how some of the test equipment itself can be included on an
integrated circuit, to provide self-test capabilities. Finally, the scan path principle

251

252 Design for Testability

PI PO

Node of Interest

Figure 12.1 Testability of a node.

can be used for internal testing, but it can also be used to test the interconnect
between integrated circuits—boundary scan.

12.1 Ad hoc Testability Improvements
If one of the objectives of a design is to enhance the testability of that design, there
are a number of styles of design that should be avoided, including the following.

• Redundant logic. As seen in the previous chapter, redundant combinational
logic will result in the presence of potentially undetectable faults. This means
that the design is not fully testable and also that time may be spent attempting
to generate tests for these undetectable faults.

• Asynchronous sequential systems (and, in particular, unstructured
asynchronous systems) are difficult to synchronize with a tester. The
operation of a synchronous system can be halted with the clock. An
asynchronous system is, generally, uncontrollable. If asynchronous design is
absolutely necessary, confine it to independent blocks.

• Monostables are sometimes used for generating delays. They are extremely
difficult to control and again should be avoided.

On the other hand, there are a number of modifications that could be made to
circuits to enhance testability. The single most important of these is the inclusion
of some form of initialization. A test sequence for a sequential circuit must start
from a known state. Therefore, initialization must be provided for all sequential
elements, as shown in Figure 12.2. Any defined state will do—not necessarily all
zeros. Multiple initial states can be useful.

The cost of enhancing testability includes that of extra I/O pins (including
interfaces, etc), extra components (MUXs), extra wiring, and the degradation of
performance because of extra gates in signal paths. In general, there are more things
that can go wrong. Against this must be set the benefit that the circuit will be easier

12.2 Structured Design for Test 253

1D

C1

1D

Master Reset
R

Clock

Normal System
Input

Master Reset

Synchronous—Reset at Next Clock

Asynchronous—Using Set/Clear pins

Figure 12.2 Resets add testability.

to test and hence the manufacturer and consumer can be much more confident that
working devices are being sold.

12.2 Structured Design for Test
The techniques described in the previous section are all enhancements that can be
made to a circuit after it has been designed. A structured design for test method
should consider the testability problem from the beginning. Let us restate the prob-
lem to see how it can be tackled in a structured manner.

Testing combinational circuits is relatively easy, provided there is no redundancy
in the circuit. The number of test vectors is (much) less than 2(no.o f inputs). Testing
sequential circuits is difficult because such circuits have states. A test may require a
long sequence of inputs to reach a particular state. Some faults may be untestable
because certain states cannot be reached. Synchronous sequential systems, however,
can be thought of as combinational logic (next-state and output logic) and sequential
logic (registers). Therefore, the key to structured design for test is to separate these
two elements.

A synchronous sequential system does not, however, provide direct control of
all inputs to the combinational logic, does not allow direct observation of all outputs
from the combinational logic, and does not allow direct control or observation of
the state variables

The scan-in, scan-out (SISO) principle overcomes these problems by making
the state variables directly accessible by connecting all the state registers as a shift
register, for test purposes, as shown in Figure 12.3. This shift register has a mode

254 Design for Testability

MUX
0
1

MUX
0
1

MUX
0
1

Primary
Inputs

Primary
Outputs

SDO

M
SDI

Combinational
Logic

Figure 12.3 SISO principle.

control input, M. In normal, operational mode, M is set to 0. In scan mode, M is set
to 1 and the flip-flops form a shift register with the input to the shift register being
the scan data in (SDI) pin and the output being the scan data out (SDO) pin.

If the combinational logic has no redundancies, a set of test patterns can be
generated for it, as if it were isolated from the state registers. The test patterns
and the expected responses then have to be sorted because this test data is applied
through the primary inputs and through the state registers, using the scan path.
Similarly, the outputs of the combinational logic are observed through the primary
outputs and using the scan path.

The scan path is used to test a sequential circuit using the following procedure.

1. Set M = 1 and test the flip-flops as a shift register. If a sequence of 1s and 0s
is fed into SDI, we would expect the same sequence to emerge from SDO
delayed by the number of clock cycles equal to the length of the shift register
(n). A useful test sequence would be 00110. . . which tests all transitions and
whether the flip-flops are stable.

2. Test the combinational logic.

(a) Set M = 1 to set the state of the flip-flops after n clock cycles by shifting a
pattern in through SDI.

12.3 Built-In Self-Test 255

(b) Set M = 0. Set up the primary inputs. Collect the values of the primary
outputs. Apply one clock cycle to load the state outputs into the
flip-flops.

(c) Set M = 1 to shift the flip-flop contents to SDO after n–1 clock cycles.

Note that step 2(a) for the next test can be done simultaneously with step 2(c) for
the present test. In other words, while the contents of the shift register are being
shifted out, new data can be shifted in behind it.

The benefit of using a scan path is that it provides an easy means of making
a sequential circuit testable. If there is no redundancy in the combinational logic,
the circuit is fully testable. The problem of test pattern generation is reduced to
generating tests only for the combinational logic. This can mean that the time to
test one device can be greater than would be the case if specific sequential tests had
been generated.

The costs of SISO include extra hardware: at least one extra pin for M. SDI
and SDO can be shared with other system functions by using multiplexers. An extra
multiplexer is needed for each flip-flop and extra wiring is needed for the scan path.
Hence, this can lead to performance degradation as the delay through the next
state logic is increased. To minimize the wiring, it makes sense to decide the order
of registers in the scan path after placement of devices on an ASIC or FPGA has
been completed. The order of registers is unimportant provided it is known to the
tester.

SISO has now become relatively well accepted as a design methodology. Most
very large scale integration (VLSI) circuits include some form of scan path, although
this is not usually documented.

A number of variations to SISO have been proposed including multiple scan
paths—put flip-flops in more than one scan path to shorten the length of each path
and to shorten the test time—and partial scan paths whereby some flip-flops are
excluded from the scan path.

12.3 Built-In Self-Test
As with all testing matters, the motivation for built-in self-test (BIST or BIT for built-
in test) is economic. The inclusion of structures on an integrated circuit or board
that not only enhance the testability, but also perform some of the testing, simplifies
the test equipment and hence reduces the cost of that equipment. BIST can also
simplify test pattern generation because the test vectors are generated internally and
allow field testing to be performed, for perhaps years after manufacture. Overall,
therefore, BIST should increase user confidence.

256 Design for Testability

Test Vectors

Circuit
Under
Test

Check
Responses

Go/No Go
(Perhaps Diagnostics)

Figure 12.4 BIST principle.

The principle of BIST is shown in Figure 12.4. The test vector generation and
checking are built on the same integrated circuit as the circuit under test. Thus,
there are two obvious problems: how to generate the test vectors and how to check
the responses. It would, in principle, be possible to store pre-generated vectors in
ROM. There could, however, be a very large number of vectors. Similarly, it would
be possible to have a look-up table of responses.

If an exhaustive test were conducted, all possible test vectors could be generated
using a binary counter. This could require a substantial amount of extra combina-
tional logic. A simpler solution is to use an LFSR, introduced in Chapter 5. An LFSR
is a pseudo-random number generator that generates all possible states (except the
all 0s state) but requires less hardware than a binary counter as shown in Figure 12.5.

A similar structure can be used instead of a look-up table to collect the responses.
The single-input signature register (SISR) is shown in Figure 12.6. This is an LFSR
with a single data input. The register holds the residue from a modulo-2 division.
In other words, it compresses the stream of input data to produce a signature that
may be compared, after a certain number of cycles, with a known good signature.

n-bit shift register

Figure 12.5 LFSR.

12.3 Built-In Self-Test 257

n-bit shift register

Figure 12.6 SISR.

Another variant is the multiple input signature register (MISR), shown in
Figure 12.7. Again, this is a modified LFSR, but with more than one data input.
Thus, a number of output vectors can be gathered and compressed. After a number
of clock cycles, the signature in the register should be unique. If the circuit con-
tains a fault, the register should contain an incorrect signature, which can easily be
checked.

This approach will obviously fail if the MISR is sensitive to errors. The proba-
bility that a faulty circuit generates a correct signature tends to 2−n for an n-stage
register and long test sequences

12.3.1 Example
For example, consider a circuit consisting of three parts: a three-stage LFSR, a
three-stage MISR, and the circuit under test, with the following functions:

X = A ⊕ B ⊕ C
Y = A · B + A · C + B · C
Z = Ā · B + Ā · C + B · C

D
Q

D
Q

D
Q

Outputs from Circuit Under Test

Figure 12.7 MISR.

258 Design for Testability

D Q D Q
D Q

D Q DQ
D Q

LFSR

CUT

MISR

A B C

X Y Z

Figure 12.8 Circuit for the BIST example.

The structure of the circuit is shown in Figure 12.8.
In order to see what the correct signature should be, we can perform a simula-

tion. A SystemVerilog model of an LFSR was presented in Chapter 5. This model can
easily be adapted to implement an MISR (see the exercises at the end of this chapter).
The circuit under test can be described in SystemVerilog by the following model.

module cut(output logic x, y, z,
input logic a_in, b_in, c_in);

logic a, b, c;

always_comb
begin
a = a_in;
b = b_in;
c = c_in;
x = a ˆ b ˆ c;

12.3 Built-In Self-Test 259

y = (a & b) | (a & c) | (b & c);
z = (!a & b) | (!a & c) | (b & c);
end

endmodule

The input signals a in, b in, and c in are not used directly because we will insert
fault models into those signals later. The test bench for this circuit can, therefore,
consist of the following code.

module bistex;

logic clock, n_set;
logic [2:0] signature, q, z;

lfsr #(3) l0 (.*);
misr #(3) m0 (.q(signature), .z(z), .clock(clock),

.n_set(n_set));
cut c0 (.a_in(q[2]), .b_in(q[1]), .c_in(q[0]),

.x(z[2]), .y(z[1]), .z(z[0]));

initial
begin

n_set = ’1;
#5ns n_set = ’0;
#10ns n_set = ’1;
end

always
begin
#10ns clock = ’0;
#10ns clock = ’1;
end

endmodule

Both the LFSR and MISR are initialized to the 111 state. When the Sys-
temVerilog model is simulated, we get the sequence of states shown in Table 12.1.

The last output of the MISR, 000, is the signature of the fault-free circuit. The
intermediate values of the MISR are irrelevant.

We can emulate a stuck fault at the input by changing one of the assignment
statements in the CUT. To model a stuck-at 0, the line,

a = a in;

is changed to
a = ‘0;

260 Design for Testability

Table 12.1 State Sequence for the BIST Example

LFSR Output CUT Output
abc xyz MISR

111 111 111
011 011 100
001 101 001
100 100 001
010 101 000
101 010 101
110 010 100
111 111 000

(We could, of course, perform a full fault simulation, as described in the previous
chapter.) If this perturbed circuit is simulated, the sequence of states is that shown
in Table 12.2.

The signature of circuit when a is stuck at 0 is therefore 011. We do not care
about the sequence of intermediate states. Hence, a comparison of the value in the
MISR with 000 when the LFSR is at 111 would provide a pass/fail test of the circuit.
In principle, we could simulate every fault in the circuit and note its signature. This
information could be used for fault diagnosis. In practice, of course, we would be
assuming that every defect manifests itself as a single stuck fault, so this diagnostic
information would have to be used with some caution. Moreover, both the LFSR
and MISR could themselves contain faults, which in turn would generate incorrect
signatures.

If we run the simulation again for a stuck-at 1, the signature 000 is generated.
This is an example of aliasing—a fault generates the same signature as the fault-free

Table 12.2 Perturbed State Sequence for the
BIST Example

LFSR Output CUT Output
abc xyz MISR

111 011 111
011 011 000
001 101 011
100 000 100
010 101 010
101 101 000
110 101 101
111 011 011

12.3 Built-In Self-Test 261

circuit. The probability of aliasing can be shown to tend to 2−n if a maximal length
sequence is used. As there are only three stages to the MISR, the probability of
aliasing is 2−3 or 1/8. With larger MISRs, the probability of aliasing decreases.

In this example, we have made the LFSR and the MISR the same size and used
the complete sequence of inputs once. None of these restrictions is essential. We
can use LFSRs of different lengths and we do not need to use all the outputs from
the LFSR nor all the inputs to the MISR. We can use a shorter sequence than the
complete cycle of the LFSR or we can run through the sequence more than once.
In all cases, however, the sequence has to be defined when the circuit is built.

12.3.2 Built-In Logic Block Observation (BILBO)
The LFSR and MISR, described previously, are specialist logic blocks. To include
BIST in a circuit using such blocks would require additional registers to those
required for normal operation. A scan path reuses the existing registers in a design
for testing; in much the same way, built-in logic block observation (BILBO) registers
are used both for normal operation and for BIST. A typical BILBO architecture is
shown in Figure 12.9. Three control signals are required, which control the circuit
as shown in Table 12.3.

To understand the functionality of the circuit, it helps to redraw the functionality
of the BILBO when the control signals are set to their different states. Figures 12.10,
12.11, and 12.12 show the normal mode, scan mode, and LFSR/MISR modes,
respectively. Note that in the scan, LFSR, and MISR modes, the Q̄ output of the
flip-flops is used, but inverted before being fed into the next stage. The reset mode

B2

B1

Zn–1 Zn–2 Z0

Qn–1 Qn–2 Q0

SDI
SDO

1
0

B3

Q

Q

Q

Q

Q

Q

Figure 12.9 BILBO.

262 Design for Testability

Table 12.3 BILBO Modes

B1 B2 B3 Mode

1 1 — Normal
0 1 — Reset
1 0 0 Signature analysis MISR
1 0 1 Test pattern generation LFSR
0 0 — Scan

Zn–1 Zn–2 Z0

Qn–1 Qn–2 Q0

Q

Q

Q

Q

Q

Q

Figure 12.10 BILBO in normal mode.

SDI SDO
Q

Q

Q

Q

Q

Q

Figure 12.11 BILBO in scan mode.

Qn–1 Qn–2 Q0

Q

Q

Q

Q

Q

Q

Zn–1 Zn–2 Z0

Figure 12.12 BILBO in LFSR/MISR mode.

12.3 Built-In Self-Test 263

R1

C1

R2

C2

Figure 12.13 Circuit partitioning for a self-test.

synchronously initializes the flip-flops to 0. It was noted in Chapter 5 that an LFSR
stays in the all-0s state if it ever enters that state. In LFSR/MISR modes, the BILBO
inverts the feedback signal, thus making the all 0s state valid, but there still remain
2n–1 states in the cycle—one state is excluded from the normal sequence.

Unlike the flip-flops in a scan-path, the flip-flops in a BILBO-oriented system
must be grouped into discrete registers. (The scan mode also allows us to link
all the BILBOs in a scan-path.) These registers would ideally replace the normal
system registers. An example of a system using BILBOs for self-test is shown in
Figure 12.13. R1 and R2 are BILBOs, and C1 and C2 are blocks of combinational
logic. To test C1, R1 is configured as an LFSR, and R2 is configured as an MISR.
Similarly, to test C2, R2 is configured as an LFSR, and R1 is configured as an MISR.

A different arrangement is shown in Figure 12.14. R1, R2, and R3 are BILBOs;
C1, C2, and C3 are combinational logic. To test C1, R2 is an LFSR and R1 is an
MISR. To test C2, R1 is an LFSR, R2 is an MISR, and so on.

We can therefore use BILBOs to test different structures of combinational logic,
but we also need to have some confidence in the correct operation of the BILBOs
themselves. Thus, how do we test the BILBOs? The first act in any test must be

C1

R1

C2

R2

C3

R3

Bus

Figure 12.14 Alternate circuit partitioning for a self-test.

264 Design for Testability

initialization. This can be done using the synchronous reset. Then the scan-path can
be used to test the flip-flops. This implies that some form of controller is needed to
generate the BILBO control signals. It is not possible to test that controller (because
a further controller would be needed, which in turn would need to be tested, ad
infinitum). Therefore, some form of reliable controller is needed to oversee the
self-test regime. It makes sense therefore to adopt a “Start Small” strategy, in which
part of the system is verified, before being used to test a further part of the system.
If the system includes some form of microprocessor, software-based tests can be
performed once the microprocessor has been checked.

Before adopting BIST in a design, the cost and effectiveness of the strategy
must be considered. There is, of course, the cost of additional hardware—just over
four gates per flip-flop for a BILBO-based design, together with the cost of a test
controller and the additional assorted wiring. This means that there will be an
increased manufacturing cost. The extra hardware means that the reliability of the
system will be decreased—there is more to go wrong. There is also likely to be
some performance degradation as the hardware between flip-flops is increased. The
incorporation of BIST means the complexity of the design and hence the time taken
to do the design is increased. On the other hand, using BIST means that the costs of
test pattern generation disappear and that the equipment needed to test integrated
circuits can be simplified. Moreover, the tests can be performed every time the
circuit is switched on, not merely once at the time of manufacture.

12.4 Boundary Scan (IEEE 1149.1)
The techniques described thus far in this chapter have been oriented toward inte-
grated circuits, in which controllability and observability may be limited. Circuits
built from discrete gates on printed circuit boards (PCBs) are generally considered
easier to test because it is possible to gain access to all the nodes of the circuit using a
probe, as shown in Figure 12.15, or a number of probes arranged as a “bed-of-nails.”
This assumption has become invalid in recent years for the following reasons.

Figure 12.15 Probe testing.

12.4 Boundary Scan (IEEE 1149.1) 265

• It is not possible to test mounted ICs (the pins may be connected together).

• PCBs now often have more than 20 layers of metal, so deep layers cannot be
reached.

• The density of components on a PCB is increasing. Multi-chip modules
(MCMs) take the chip/board concept further and have unpackaged
integrated circuits mounted directly on a silicon substrate.

Boundary scan is a technique for testing the interconnect on PCBs and for
testing ICs mounted on PCBs. As before, both the ICs and the empty PCB can
be tested, but boundary scan replaces the step of testing the loaded PCB with a
“bed-of-nails” tester. The bed-of-nails approach has also been criticized because of
“back-driving”—in order to test a single gate, its inputs would be forced to particular
logic values, which also forces those logic values onto the outputs of other gates.
This is not how gates are designed to work and may cause them damage.

The principle of boundary scan is to allow the outputs of each IC to be con-
trolled and the inputs to be observed. For example, consider the faults shown in
Figure 12.16. These faults are external to the integrated circuits and have arisen
as a result of assembling (fault-free) ICs onto a PCB. Instead of using mechanical
probes to access the board, the faults are sensitized electrically. The outputs of the
left-hand ICs in Figure 12.16 are used to establish test patterns, and the inputs of
the right-hand IC are used to observe the responses. Therefore, we need to control
and observe the output and input pins, respectively, of the integrated circuits. This
can be done by connecting those pins, on the boundary of the integrated circuits,
into a scan path, using special logic blocks at each input and output.

Short to Ground
(Stuck at 0)

Solder Bridge

Figure 12.16 Circuit board faults.

266 Design for Testability

Serial
Data In

Serial
Data Out

Boundary Scan Cell TDI TDO

Board

Compliant Component Internal System Logic

Figure 12.17 Board with boundary scan.

Figure 12.17 shows how the input and output pins of all the ICs on a board
are connected together in a scan path. Each IC has dedicated pins to allow the scan
path to pass through it. These pins are labeled as TDI (test data in) and TDO (test
data out). In addition, control pins will be needed. The various ICs on a board may
come from different manufacturers. For boundary scan to work, the ICs need to use
the same protocols. Therefore, an IEEE standard, 1149.1, has been defined. This
standard arose from the work of the Joint Test Action Group (JTAG). The term
JTAG is therefore often used in reference to the boundary scan architecture.

Every boundary scan compliant component has a common test architecture,
shown in Figure 12.18. The elements of this architecture are as follows.

1. Test access port (TAP)—The TAP consists of four or five additional pins for
testing. The pins are:

• TDI and TDO. Both data and instructions are sent to ICs through the scan
path. There is no way to distinguish data from instructions, or indeed to
determine which particular IC a sequence of bits is intended to reach.
Therefore, TMS is used to control where the data flows.

• TMS (test mode select). Together with the TCK pin, the TMS pin is used to
control a state machine that determines the destination of each bit arriving
through TDI.

• TCK (test clock)

• TRST (test reset) is an optional asynchronous reset (not shown in
Figure 12.18).

12.4 Boundary Scan (IEEE 1149.1) 267

Boundary Scan Register

System

Logic

Inputs

System

Logic

Outputs

Internal
System
Logic

TDI

TMS

TCK

TDO

Other Test Data
Registers

Test-Data
Register
MUX

Scan
MUX

Control Signals

TAP Controller

Bypass Register

Instruction
Register

Figure 12.18 Boundary scan architecture.

2. TAP controller—This is a 16-state machine that controls the test. The inputs
to the state machine are TCK and TMS. The outputs are control signals for
other registers. The state chart of the TAP controller is shown in Figure 12.19.
Notice that a sequence of five 1s on TMS in successive clock cycles will put
the state machine into the test-logic-reset state from any other state. The
control signals derived from the TAP controller are used to enable other
registers in a device. Thus, a sequence of bits arriving at TDI can be sent to
the instruction register or to a specific data register, as appropriate.

3. Test data registers—A boundary scan compliant component must have all its
inputs and outputs connected into a scan path. Special cells, described later,
are used to implement the scan register. In addition, there must be a bypass
register of 1 bit. This allows the scan path to be shortened by avoiding the
boundary scan register of a component. Other registers may also be included,
for example, an IC might include an identification register, the contents of
which could be scanned out to ensure that the correct device had been
included on a PCB. Similarly, the internal scan path of a device could be made
accessible through the boundary scan interface. Some programmable logic
manufacturers allow the boundary scan interface to be used for programming
devices. Thus, the configuration register is another possible data register.

268 Design for Testability

1 Test-Logic-Reset

Select-DR-Scan

0

0 Run-Test/Idle
1 1 1

0 0

1

0

1

0

0
0

Select-IR-Scan

Capture-DR Capture-IR

1

1 1

0

1

0

0 01 1

0

1

0

1

1 0 1 0

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

Figure 12.19 TAP controller state diagram.

4. Instruction register—This register has at least 2 bits, depending on the
number of tests implemented. It defines the use of test data registers. Further
control signals are derived from the instruction register.

The core logic is the normal combinational and sequential logic of the de-
vice. This core logic may (should) contain a scan path and may also contain BIST
structures.

A typical boundary scan cell is shown in Figure 12.20. This cell can be used
for an input or an output pin. For an input pin, IN is connected to the pin, OUT
is connected to the device core; for an output pin, IN comes from the core, OUT
goes to the pin. Other designs of boundary scan cell are possible.

12.4 Boundary Scan (IEEE 1149.1) 269

SCAN_OUT

OUT

MODE_CONTROLUpdateDRClockDR

ShiftDR

SCAN_IN

IN

D DQ Q
MUX

MUX

Figure 12.20 Boundary scan cell.

The boundary scan cell has four modes of operation.

1. Normal mode. Normal system data flows from IN to OUT.

2. Scan mode. ShiftDR selects the SCAN IN input, and ClockDR clocks the
scan path. ShiftDR is derived from the similarly named state in the TAP
controller of Figure 12.19. ClockDR is asserted when the TAP controller is in
state Capture-DR or Shift-DR. (Hence, of course, the boundary scan
architecture is not truly synchronous!)

3. Capture mode. ShiftDR selects the IN input and data is clocked into the scan
path register with ClockDR to take a snapshot of the system.

4. Update mode. After a capture or scan, data from the left flip-flop is sent to
OUT by applying one clock edge to UpdateDR. Again, this clock signal comes
from the TAP controller when it is in state Update-DR. The TAP controller
then enters the run test state and MODE CONTROL is set as appropriate
according to the instruction held in the instruction register (see the following).

For normal input and output pins, the boundary scan cells are the only logic
between the core and the IC pins. The only cases where logic is permitted between
the boundary scan cell and an external pin are shown in Figure 12.21.

A number of instructions may be loaded into the instruction register. These
allow specific tests to be performed. During test execution, the TAP controller is
in the run test state. Three of these tests are mandatory; the remaining tests are
optional. Some of these tests are as follows.

• EXTEST (Mandatory). This instruction performs a test of the system,
external to the core logic of particular devices. Data is sent from the output

270 Design for Testability

Core
Logic

Tristate Output

Bidirectional

EN

EN

Figure 12.21 Logic outside boundary scan path.

boundary scan cells of one device, through the pads and pins of that device,
along the interconnect wiring, through the pins and pads of a second device,
and into the input boundary scan cells of that second device. Hence, a
complete test of the interconnect from one IC core to another is performed.

• SAMPLE/PRELOAD (Mandatory). This instruction is executed before and
after the EXTEST and INTEST instructions to set up pin outputs and to
capture pin inputs.

• BYPASS (Mandatory). This instruction selects the bypass register to shorten
the scan path.

• RUNBIST (Optional). Runs a built-in self-test on a component.

• INTEST (Optional). This instruction uses the boundary scan register to test
the internal circuitry of an IC. Although such a test would normally be
performed before a component is mounted on a PCB, it might be desirable to
check that the process of soldering the component onto the board has not
damaged it. Note that the internal logic is disconnected from the pins, so if
pins have been connected together on the board, that will have no effect on
the standard test.

• IDCODE, USERCODE (Optional). These instructions return the
identification of the device (and the user identification for a programmable
logic device). The code is put into the scan path.

• CONFIGURE (Optional). An SRAM-based FPGA needs to be configured
each time power is applied. The configuration of the FPGA is held in
registers. These registers can be linked to the TAP interface. This clearly saves
pins as the configuration and test interfaces are shared.

12.4 Boundary Scan (IEEE 1149.1) 271

The MODE CONTROL signal of Figure 12.20 is set to select the flip-flop
output when instructions EXTEST, INTEST, and RUNBIST are loaded in the
instruction register. Otherwise, the IN input is selected.

Testing a board with boundary scan components is in many ways similar to
testing a component with a scan path. First, the boundary scan circuitry itself must be
tested for faults such as a broken scan path or a TAP failure. Then, interconnect and
other tests can be performed. The boundary scan path allows nodes to be controlled
from one point in the scan path and observed at another point. Test patterns for
the interconnect (and for non-boundary scan compliant components) have to be
derived in much the same way that tests for logic are determined. These tests and
the appropriate instructions have to be loaded into the registers of boundary scan
components in the correct order. This process is clearly complex to set up and really
has to be automated.

An example of how boundary scan might be included on an IC is shown in
Figure 12.22. The basic circuit has two D-type flip-flops with a clock and reset. The
D, Q, clock, and reset pins have boundary scan cells included as shown in the figure.
A TAP controller and instruction and bypass registers are included, together with
the four extra pins.

The costs of implementing boundary scan on an IC include the cost of a bound-
ary scan cell for each pin, the TAP controller, the 1-bit bypass register, the instruction
register, and four extra pins. There will be extra wiring on the PCB.

TAP Controller
Interface and

Bypass Registers

1 VDD

7 GNDCLK 2

RESET 3

D(0) 4

D(1) 5 11 Q(1)

12 Q(0)

TMS 8

TDI 9

10 TCK

6 TDO

5

4

3

2 1

0

Figure 12.22 IC with boundary scan.

272 Design for Testability

On the other hand, there can be significant benefits. The fault coverage of a
PCB can be close to 100%. Boundary scan is easy to implement on a PCB requiring
four pins on an edge connector. Specialist, expensive test equipment, such as a bed-
of-nails tester, is not needed. Indeed, it is possible to implement a boundary scan
tester using little more than a standard PC or workstation. Tests can be performed
on ICs after they have been mounted on the PCB, so field testing is easy. Because
the test circuitry is independent of normal system functions, it is possible to mon-
itor the inputs and outputs of ICs in normal operation, thus providing debugging
functions.

Summary
The testability of a circuit can be improved by modifying the circuit design. The
simplest modifications include providing asynchronous resets to every register and
avoiding redundant and other uncontrollable logic. SISO separates the sequential
from the combinational logic, reducing test generation to a purely combinational
circuit problem. BIST can reduce manufacturing costs by putting much of the test
circuitry on the chip. Boundary scan uses the SISO principle to allow complex PCBs
to be tested. These various techniques can be combined.

Further Reading
The books by Abramovici, Breuer and Friedman [3], Miczo [15], and Wilkins [28]
all describe design for test methods. Boundary scan is now incorporated into many
FPGAs, and the TAP interface is used to configure the internal logic. Details are on
the manufacturers’ Web sites.

Exercises
12.1 Explain what is meant by initialization. Why is it necessary to initialize a

circuit for test purposes even if it is not necessary in its system function?

12.2 What are the problems that the SISO method is intended to overcome?
Explain the principles of the SISO method, and identify the benefits and
costs involved.

12.3 A certain integrated circuit contains 50 D-type flip-flops. Assuming that all
states are reachable, and that it may be clocked at 1MHz, what is the
minimum time needed for an exhaustive test? If the same integrated circuit

Exercises 273

SRGn
S

C1/→

1D

&

To CUT

Figure 12.23 Circuit for Exercise 12.4.

is designed with a full scan-path and if all the combinational logic may be
fully tested with 200 test vectors, estimate the time now required to
complete a full test.

12.4 Show that the circuit of Figure 12.23 is a suitable test generator for an
n-input NAND gate. Hence, suggest a suitable BIST structure for each of
the NAND planes in a PLA.

12.5 Figure 12.24 shows the structure of a simple CPU (reproduced from
Chapter 7). There is a single bus, 8 bits wide. “PC,” “IR,” “ACC,” “MDR,”
and “MAR” are 8-bit registers. “Sequencer” is a state machine with inputs
from the “IR” block and from other points in the system and with outputs
that control the operation of the “ALU” and that determine which register
drives the bus.

PC IR

RMA

Sequencer

MDR MAR
ACC

ALU

Control Signals

Flags

Figure 12.24 CPU datapath for Exercise 12.5.

274 Design for Testability

The CPU design is to be modified to include a self-test facility. This self-test
will not require the use of any external signals or data other than the clock
and will generate a simple pass/fail indication. The self-test should require
as little additional hardware as possible.

(a) Describe the modifications you would make to the hardware to allow a
self-test to be performed.

(b) Describe the strategy to be used to test the system, excluding the
“Sequencer.” Does testing the “ALU” present any particular
difficulties?

12.6 What are the main hardware components of the IEEE 1149.1 boundary
scan test architecture?

12.7 Figure 12.19 shows the state transition diagram of the boundary scan TAP
controller. Assuming that the instruction for an EXTEST is 10 for a
particular IC, what sequence of inputs needs to be applied to the TAP of
that IC to load the pattern 1010 into the first four stages of the boundary
scan register of the IC and to run an EXTEST? (Note that the least
significant bits should be loaded first.)

12.8 If the outputs of four boundary scan register stages are connected to the
inputs of four similar register stages in a second IC, show, in principle, how
the test sequence from Exercise 12.7 can be extended to capture the
responses of the interconnect. What assumptions have you made about the
connection of the test structures on the two ICs?

12.9 A particular integrated circuit has 2000 flip-flops and 5000 other gates. The
package has 52 pins, including power, ground, clock, and reset. All the
buses are 16 bits wide. A new version of the circuit is to be built. Before
redesigning the circuit, the manufacturer would like an estimate of the
costs of:

(a) One or more scan-paths to cover all of the flip-flops
(b) Boundary scan to IEEE 1149.1 standard
(c) BIST

The estimates should be in terms of extra components and pins and should
consider each of the three features individually, together with any savings
that may be made by including two or more features.

Exercises 275

Table 12.4 TAP Controller
Outputs for Exercise 12.11

Signal State(s)

UpdateDR Update-DR
ClockDR Capture-DR

Shift-DR
ShiftDR Shift-DR
UpdateIR Update-IR
ClockIR Capture-IR

Shift-IR
ShiftIR Shift-IR

12.10 Modify the SystemVerilog model of the LFSR from Chapter 5 to implement
an n-stage MISR. Hence, write a model of an n-bit BILBO register.

12.11 Write a synthesizable SystemVerilog model of the IEEE 119.1 TAP
controller. The outputs shown in Table 12.4 should be asserted.

This page intentionally left blank

13Asynchronous Sequential
Design

The sequential circuits described in Chapters 5, 6, and 7 are synchronous. A
clock is used to ensure that all operations occur at the same instant. This avoids the
problems of hazards because such transient effects can be assumed to have died away
before the next clock edge. Therefore, irredundant logic can be used, which then
makes the combinational parts of the circuits fully testable, at least in theory. The
flip-flops used in synchronous design are, however, asynchronous internally. In this
chapter, we consider the design of asynchronous elements, and use a SystemVerilog
simulator to illustrate the difficulties of asynchronous design.

13.1 Asynchronous Circuits
Throughout this book, the emphasis has been on the design of synchronous sequen-
tial circuits. State information or other data has been loaded into flip-flops at a
clock edge. Asynchronous inputs to flip-flops have been used, but only for initial-
ization. A common mistake in digital design is to use these asynchronous inputs for
purposes other than initialization. This mistake is made either because of inexpe-
rience or because of a desire to simplify the logic in some way. Almost inevitably,
however, circuits designed in such a manner will cause problems by malfunctioning
or because subsequent modification or transfer to a new technology will cause the
assumptions made in the design to become invalid.

277

278 Asynchronous Sequential Design

Synchronous sequential design is almost overwhelmingly preferred and prac-
ticed because it is easier to get right than asynchronous design. Simply connecting
logic to the asynchronous inputs of flip-flops is almost always wrong. Structured
design techniques exist for asynchronous design and this chapter describes the de-
sign process and its pitfalls. It should be noted, however, that we are primarily
concerned with the design of circuits comprising a few gates. It is possible to de-
sign entirely asynchronous systems, but such methodologies are still the subject of
research. Nevertheless, as clock speeds increase, some of the complex timing issues
described here will become relevant. It is increasingly difficult to ensure that a clock
edge arrives at every flip-flop in a system at exactly the same instance. Systems may
consist of synchronous islands that communicate asynchronously. To ensure such
communications are as reliable as possible, specialized interface circuits will need
to be designed, using the techniques described in this chapter.

Although, as noted above, this book has been concerned with synchronous
systems, reference was made to the synthesis of asynchronous elements (latches) in
Chapter 10. At present, synthesis tools are intended for the design of synchronous
systems, normally with a single clock. This is particularly true of synthesis tools
intended for FPGA design. The SystemVerilog construct

assign q = c ? d : q;

would be synthesized to an asynchronous sequential circuit structure. Similarly, the
sequential block

always_latch
if (c)

q <= d;

would also be synthesized to an asynchronous latch. In both cases, q explicitly holds
onto its value unless c is asserted. It might be thought that the circuit structures
created by a synthesis tool for the two cases would be identical. In general, this is
not so. The first case is exactly the same as writing

assign q = (d & c) | (q & ˜c);

Hence, a synthesis tool would create an inverter, two AND gates, and an OR
gate (or an inverter and three NAND gates). On the other hand, a compliant syn-
thesis tool would infer the existence of a latch from the incomplete always_latch
statement of the second case, and use a latch from a library (while also issuing a warn-
ing message, in case the incomplete if statement were a coding error). The latch
created by Boolean minimization and the library latch are not the same. Indeed, the
Verilog RTL synthesis standard IEEE 1364.1 explicitly forbids the use of concurrent

13.1 Asynchronous Circuits 279

D

C

C

E

F

Q

Figure 13.1 Basic D latch.

assignments of the form shown, while permitting the use of incomplete if and case
statements.

To see why, assume that the circuit has been implemented directly, as shown
in Figure 13.1. This circuit should be compared with that of Figure 2.13. Indeed,
the following analysis is comparable with that of Section 2.4. Let us assume that
each gate, including the inverter, has a delay of 1 unit of time, for example, 1 ns.
Initially, Q, D, and C are at logic 1. C then changes to 0. From the analysis of
Section 2.4, we know that this circuit contains a potential hazard. When we draw a
timing diagram for this circuit, as shown in Figure 13.2, this hazard appears at Q.
This hazard is propagated back to F , which causes Q to change ad infinitum. Hence,
the circuit oscillates. The causality between F and Q is not shown in Figure 13.2

Q
1

0

D
1

0

C
1

0

C
1

0

E
1

0

F
1

0

Figure 13.2 Timing diagram for the circuit of Figure 13.1.

280 Asynchronous Sequential Design

for clarity. This kind of behavior is obviously extremely undesirable in a sequential
circuit. Although the assumption of a unit delay in each gate may be unrealistic, it
can easily be demonstrated, by means of a SystemVerilog simulation, that a hazard,
and hence, oscillatory behavior will occur, irrespective of the exact delays in each
gate.

We should, at this point, include a very clear warning. Although we will use Sys-
temVerilog in this chapter to model and to simulate the behavior of asynchronous
circuits, these simulations are intended to demonstrate that problems may exist.
It is extremely difficult to accurately predict, by simulation, exactly how a circuit
will behave, particularly when illegal combinations of inputs are applied. The spu-
rious effects result from voltage and current changes within electronic devices, not
transitions between logic values.

The solution to the problem of oscillatory behavior is, as stated in Section 2.4,
to include redundant logic by way of an additional gate. Thus,

Q+ = D · C + Q · C̄ + D · Q

or

Q+ = D · C · Q · C̄ · D · Q

where Q+ represents the “next” value of Q. The redundant gate, D · Q, has a 0
output while D is 1. Therefore, Q is held at 1.

The expression for Q+ can be rearranged:

Q+ = D · C + Q · (
C̄ + D

)

Hence, the circuit of Figure 13.3 can be constructed. This would not and could
not be generated by optimizing logic equations, but instead would exist in a library.
It is this circuit that would be called from the library by a synthesis tool when an
incomplete if statement was encountered.

D

C

Q

Q

R

S

Figure 13.3 D latch with hazard removed.

13.2 Analysis of Asynchronous Circuits 281

Table 13.1 Truth Table for
an RS Latch

R S Q+ Q̄+

0 0 1 1
0 1 1 0
1 0 0 1
1 1 Q Q̄

13.2 Analysis of Asynchronous Circuits
13.2.1 Informal Analysis
The operation of the D latch of Figure 13.3 is relatively straightforward. The key
is the operation of the cross-coupled NAND gates. Two NAND (or NOR) gates
connected in this way form an RS latch with the truth table given in Table 13.1. (An
RS latch built from NOR gates has a similar truth table, but with the polarities of
R and S reversed.)

The input R = S = 0 is normally considered illegal because it forces the outputs
to be the same, contradicting the expected behavior of a latch.

The D latch of Figure 13.3 contains an RS latch, in which R and S are controlled
by two further NAND gates. When C is at logic 0, R and S are at 1. Therefore,
the latch holds whatever value was previously written to it. When C is 1, S takes
the value of D and R takes the value of D̄. From the truth table, we can see that
Q therefore takes the value of D. We can further note that the signal paths from
D to the outputs are unequal because of the inverter. It is therefore reasonable to
assume that if D and C were to change at the same time, the behavior of the latch
would be unpredictable.

Figure 13.4 shows the circuit of a positive edge-triggered D flip-flop. We will
attempt to analyze this circuit informally, but this analysis is intended to show that
a formal method is needed. Let us first deal with the “asynchronous” set and reset.1

If S is 0 and R is 1, Q is forced to 1 and Q̄ is forced to 0, according to the truth
table. Similarly, if S is 1 and R is 0, Q is forced to 0 and Q̄ is forced to 1. Under
normal synchronous operation, S and R are both held at 1, and therefore can be
ignored in the following analysis. Note, however, that if both S and R are held at 0,
both Q and Q̄ go to 1. Hence, this condition is usually deemed to be illegal.

1. At this level, all of the inputs are asynchronous, of course. Synchronous design works because we
follow certain conventions about the use of inputs, not because particular inputs are special.

282 Asynchronous Sequential Design

Q

Q

S

D

C

E

F

A

B

R

Figure 13.4 Positive edge-triggered D flip-flop.

Let us consider the effects of changes at the D and C inputs, while R = S = 1.
If C is at 0, then both E and F are at 1 and therefore Q and Q̄ are held. If D is at
0, internal nodes A and B are at 0 and 1, respectively. If D is at 1, A is 1 and B is
0. Therefore, D can change while the clock is low, causing A and B to change, but
further changes to E and F are blocked by the clock being low.

When the clock changes from 0 to 1, either D is 0, and hence A is 0 and B is
1, which force E to 1 and F to 0 and therefore, Q to 0 and Q̄ to 1, or D is 1, A is
1, B is 0 and therefore E is 0, F is 1, Q is 1, and Q̄ is 0. Therefore, when the clock
changes, it is assumed that A and B are stable. Hence, there is a setup time in which
any change in D must have propagated to A before the clock edge.

While the clock is 1, D can again change without affecting the outputs. Two
conditions are possible: (a) D was 0 at the clock edge, and hence A is 0, B is 1, E
is 1, and F is 0. If D changes to 1, there will be no change to B because F is 0 and
hence B is always 1 or (b) D was 1 at the clock edge, thus A is 1, B is 0, E is 0, and
F is 1. If D changes to 0, B changes from 0 to 1, but as E is 0, this change is not
propagated to A. Therefore, again, the output is unaffected. The falling clock edge
forces both E and F to 1 again.

It is apparent that this descriptive, intuitive form of analysis is not sufficient
to adequately describe the behavior of even relatively small asynchronous circuits.
Moreover, it would be impossible to design circuits in such a manner. It is possible
to use a SystemVerilog simulator to verify the behavior of such circuits, but we need
a formal analysis technique.

13.2 Analysis of Asynchronous Circuits 283

13.2.2 Formal Analysis
Before proceeding with the formal analysis of both the D latch and the edge-
triggered D flip-flop, we need to state a basic assumption. The fundamental mode
restriction states that only one input to an asynchronous circuit may change at a
time. The effects of an input change must have propagated through the circuit, and
the circuit must be stable before another input change can occur. The need for this
restriction can be seen from the two circuits already considered. If D changes at
almost the same time as the clock, unequal delay paths mean that internal nodes are
not at expected, consistent values, and unpredictable behavior may result. In the
worst case, the output of a latch or flip-flop may be in an intermediate, metastable
state, that is neither 0 nor 1. We will return to metastability later.

In order to perform a formal analysis, we have to break any feedback loops in
the circuit. Of course, we don’t actually change the circuit, but for the purposes of
the analysis, we pretend that all the gate delays in the circuit are concentrated in one
or more virtual buffers in the feedback loops. The gates are therefore assumed to
have zero delays. The D latch is redrawn in Figure 13.5. Note that there is only one
feedback loop in this circuit, although at first glance the cross-coupled NAND gate
pair might appear to have two feedback loops. If the one feedback loop were really
broken, the circuit would be purely combinational, which is sufficient. In Figure
13.5, the input to the virtual buffer is labeled as Y+, while the output is labeled as
Y. Y is the state variable of the system. This is analogous to the state variable in a
synchronous system. Y+ is the next state. The system is stable when Y+ is equal to
Y. In reality, of course, Y+ and Y are two ends of a piece of wire and must have
the same value, but, to repeat, for the purpose of analysis, we pretend that they
are separated by a buffer having the aggregate delay of the system. Note that we
separate the state variable from the output, although in this case, Q and Y+ are
identical.

D

C

Q

Q

Y

Y+

Figure 13.5 D latch with a virtual buffer.

284 Asynchronous Sequential Design

0

1

0 0 1 0

1 0 1 1

Y 00 01 11 10

DC

Y+

Figure 13.6 Transition table for a D latch.

We can write the state and output equations for the latch as:

Y+ = D · C + Y · C̄ + D · Y
Q = D · C + Y · C̄ + D · Y

Q̄ = D̄ · C + Ȳ

From this we can now write a transition table for the state variable, as shown in
Figure 13.6.

A state table replaces the Boolean state variables with abstract states. In the
state table of Figure 13.7, the stable states are circled. A state is stable when the
next state is equal to the current value. The state table can also include the outputs
(state and output table), as shown in Figure 13.7. Notice that there is an unstable
state that has both outputs the same.

Using the state and output table, we can trace the change of states when an
input changes. Starting from the top left corner of the table, with the current state
as K and the two inputs at 0, let D change to 1. From Figure 13.8, it can be seen that
the state and output remain unchanged. If C then changes to 1, the system moves
into an unstable state. The system now has to move to the stable state at L, with
D and C both equal to 1. Note that the state transition must be a vertical move on
the state transition diagram. This is in order to comply with the fundamental mode
restriction—anything other than a vertical move implies a change in an input value,
which would therefore be occurring before the system was stable. It can be seen
that the latch behaves as we would expect a D latch to behave. If D is changed from

K

L

K,01 L,11 K,01

L,10 K,01 L,10 L,10

S 00 01 11 10

DC

S+, QQ

K,01

Figure 13.7 State table for a D latch.

13.3 Design of Asynchronous Circuits 285

S0

S1

S0,01 S1,11 S0,01

S1,10 S0,01 S1,10 S1,10

S 00 01 11 10

DC

S+, QQ

S0,01

D changes to 1

C changes to 1

Figure 13.8 Transitions in a state table.

0 to 1, followed by C changing from 0 to 1, we would expect Q to change from 0
to 1, and it can be seen from Figure 13.8 that this is what happens.

13.3 Design of Asynchronous Circuits
In essence, the design procedure for asynchronous sequential circuits is the reverse
of the analysis process. An abstract state table has to be derived, then a state as-
signment is performed, and finally state and output equations are generated. As
will be seen, however, there are a number of pitfalls along the way, making asyn-
chronous design much harder than synchronous design. To illustrate the procedure,
we will perform the design of a simple circuit, and show, both theoretically and by
simulation, the kinds of errors that can be made.

Let us design an asynchronous circuit to meet the following specification: The
circuit has two inputs, Ip and Enable, and an output, Q. If Enable is high, a rising
edge on Ip causes Q to go high. Q stays high until Enable goes low. While Enable is
low, Q is low.

It can be see from this specification that there are eight possible combinations
of inputs and outputs, but that two combinations cannot occur: if Enable is low, Q
cannot be high. This leaves six states to the system, as shown in Table 13.2.

Table 13.2 States of an Example
Asynchronous System

State Ip Enable Q

a 0 0 0
b 0 1 0
c 1 0 0
d 1 1 0
e 0 1 1
f 1 1 1

286 Asynchronous Sequential Design

a b f e f e a c a c d b f c d c d b a

Ip

Enable

Q

Figure 13.9 States in the design example.

The first task is to work out all the possible state transitions. One way to do this
is to sketch waveforms and to mark the states as shown in Figure 13.9. From this a
state transition diagram can be constructed (Figure 13.10). This state diagram can
also be expressed as the primitive flow table of Figure 13.11. A primitive flow

a/0 c/0

d/0b/0f/1

e/1
00

00

00
10

10

10

10
11

11

01

01

11

11

11 01

01

01 00

Figure 13.10 State transition diagram for the design example.

00 01 11 10 Q

Ip Enable

S

a

b

c

d

e

f

a

a

a

–

a

–

S+

b

b

–

b

e

e

–

f

d

d

f

f

c

–

c

c

–

c

0

0

0

0

1

1

Figure 13.11 Primitive flow table.

13.3 Design of Asynchronous Circuits 287

table has one state per row. Because of the fundamental mode restriction, only state
transitions that are reachable from a stable state with one input change are marked.
State transitions that would require two or more simultaneous input changes are
marked as “don’t cares.” The outputs are shown for the stable state and all transitions
out of the state. It is also possible to assume that the outputs only apply to the stable
states and that the outputs during all transitions are “don’t cares.”

There are more states in this primitive flow table than are needed. In Chapter 6,
it was shown that states can be merged if they are equivalent. In this example, there
are “don’t care” conditions. We now speak of states being compatible if their next
states and outputs are the same or “don’t care.” There is an important difference
between equivalence and compatibility. It can be seen that states a and b are compat-
ible and states a and c are compatible. States b and c are, however, not compatible.
If a and b were equivalent and a and c were also equivalent, b and c would be
equivalent by definition.

Here, states a and b are compatible and may be merged into state A, say. When
compatible states are merged, “don’t cares” are replaced by defined states or outputs
(if they exist). Similarly, states c and d may be merged into C and e, and f may be
merged into E. The resulting state and output table is shown in Figure 13.12.

At this point, considerable care is needed in making an appropriate state as-
signment. We will first demonstrate how not to perform a state assignment. We
can show, using a SystemVerilog simulation, that a poor state assignment can easily
result in a malfunctioning circuit. To encode three states requires two state vari-
ables, as described in Chapter 6. There are 24 possible state assignments. As with
a synchronous system, there is no way to tell, in advance, which state assignment
is “best.” Therefore, let us arbitrarily assign 00 to A, 01 to C , and 11 to E. This
gives the transition table shown in Figure 13.13. The state 10 is not used, so in
deriving next state expressions, the entries corresponding to 10 are “don’t cares.”

00 01 11 10 Q

Ip Enable

S

A

C 0

0

E

A

A

A

A

A

E

E

C

E

C

C

C 1

S+

Figure 13.12 State and output table.

288 Asynchronous Sequential Design

00 01 11 10 Q

Ip Enable

Y1Y0

00 00 00 01 0

01 00 00 01 0

11 00 11 01 1

Y1
+ Y0

+

11

11

01

Figure 13.13 Transition table.

Hazard-free next state and output equations can be found using K-maps:

Y+
1 = Y1 · Enable + I p · Enable · Ȳ0

Y+
0 = I p + Y1 · Enable

Q = Y1

A SystemVerilog model of this circuit is as follows. The next state expressions
have been given arbitrary delays. It is left as an exercise for the reader to write a
suitable testbench.

module Async_ex (input logic ip, enable,
output logic y0, y1);

assign #3ns y1 = (y1 & enable) |
(ip & enable & ˜y0);

assign #2ns y0 = ip | (y1 & enable);
endmodule

If Y1 and Y0 are both 0 and Ip and Enable are 0 and 1, respectively, Q is 0. Now,
let Ip change to 1. We would expect to move horizontally into an unstable state
and then to move vertically to the stable state Y1Y0 = 11. In fact, the SystemVerilog
simulation shows that the circuit goes to Y1Y0 = 01 (Figure 13.14a). If the delays are
reversed, however, the circuit works as expected (Figure 13.14b):

assign #2ns y1 = (y1 & enable) | (ip & enable & ˜y0);
assign #3ns y0 = ip | (y1 & enable);

Why is the circuit sensitive to these delays? We have accounted for hazards in
the Boolean minimization, so they are not the problem. Let us consider the transition
table, including the unused state, with the values for the unused state as implied by
the minimized equations, as shown in Figure 13.15.

13.3 Design of Asynchronous Circuits 289

ip

enable

y0

y1

(a)

y0

y1

0 5 10 15 20 25 30

(b)

Figure 13.14 Simulation of an asynchronous circuit example: (a) with race; (b) without race.

In the first case, Y1 changes first; therefore, the circuit changes to the unstable
state 10, at which point Y0 changes and the circuit finishes in the correct state. In the
second case, Y0 changes first and the circuit moves to the stable state 01, and stays
there! In other words, the order in which the state variables change can affect the
final state of the circuit. The situation in which two or more state variables change
as a result of one input change is known as a race. If the final state depends on the
exact order of the state variable changes, that is known as a critical race. There is a

00 01 11 10 Q

Ip Enable

Y1Y0

00 00 00 01 0

01 00 00 01 0

11 00 11 01 1

Y1
+ Y0

+

11

11

01

10 00 11 01 111

Figure 13.15 Transition table with a critical race.

290 Asynchronous Sequential Design

ip

enable

y0

y1

0 5 10 15 20 25 30

Figure 13.16 Simulation of an asynchronous circuit with a cycle.

potentially even more disastrous situation. If the don’t cares in the K-maps produced
from the transition table of Figure 13.13 were forced to be 0 (which results in non-
minimal next state expressions, but is otherwise perfectly legitimate), the next state
equations become:

Y+
1 = Y1 · Y0 · Enable + I p · Enable · Ȳ1 · Ȳ0

Y+
0 = I p · Ȳ1 + I · Y0 + Y1 · Y0 · Enable

.

When the SystemVerilog model shown below is simulated, the circuit oscillates,
as shown in Figure 13.16.

assign #2ns y1 = (y1 & y0 & enable) |
(ip & enable & ˜y1 & ˜y0);

assign #3ns y0 = (ip & ˜y1) | (ip & y0) |
(y1 & y0 & enable);

Figure 13.17 shows the transition table. Y1 changes to 1 before Y0 can react, so
the circuit moves to state 10. Y1 is then forced back to 0, so the circuit oscillates
between states 00 and 01. This is known as a cycle.

00 01 11 10 Q

Ip Enable

Y1Y0

00 00 00 01 0

01 00 00 01 0

11 00 11 01 1

Y1
+ Y0

+

11

11

01

10 00 00 00 100

Figure 13.17 Transition table with a cycle.

13.3 Design of Asynchronous Circuits 291

00 01 11 10 Q

Ip Enable

S

A 0

E

A

G

A

E

G

E

C

C 1

S+

C 0A A C C

G –A – E –

Figure 13.18 Modified state table.

We clearly have to perform a state assignment that avoids both critical races
and cycles. In this example, such an assignment is not possible with just three states.
Therefore, we have to introduce a fourth state. This state is unstable, but it ensures
that only one state variable can change at a time. Figure 13.18 shows the modified
state table, while Figure 13.19 shows a simplified state transition diagram, with the
newly introduced state, G, and a suitable state assignment. Hence, expressions for
the state variables can be derived. In this case, the state variable expressions are:

Y+
1 = Y1 · Y0 · Ī + Y1 · Enable + I p · Enable · Ȳ0

Y+
0 = I p · Enable + I p · Y0 + Y1 · Enable

.

We can simulate SystemVerilog models of this circuit with either Y1 or Y0 chang-
ing first, and in both cases the circuit works correctly.

There is, however, one final potential problem. There are no possible redundant
terms in this example, so we can be sure that all potential static hazards have been
eliminated. In principle, therefore, the circuit can be built as shown in Figure 13.20.
If, however, as a result of the particular technology used or the particular layout
adopted, the input to the top AND gate is delayed with respect to the state variables,
as shown, the circuit may still malfunction. This condition can be demonstrated
again with a SystemVerilog model.

A C

EG

00 01

1110

Figure 13.19 Simplified state transition diagram.

292 Asynchronous Sequential Design

Y0
+

Y1
+

Ip

Enable

Delay

Figure 13.20 Circuit with an essential hazard.

assign #5ns ipslow = ip;
assign #2ns y1 = (y1 & y0 & ˜ip) | (y1 & enable) |

(ipslow & enable & ˜y0);
assign #3ns y0 = (ip & y0) | (ip & ˜enable) |

(y1 & enable);

The transition table of Figure 13.21 shows what happens if Ip changes from 1
to 0 from state 01 while Enable stays at 1. In theory, this change should only cause
transitions 1a and 1b and the final state should be 00. In practice, because of the
delay in Ip, the circuit then follows the other transitions shown, 2a , 2b, 3a , and 3b,
to finish in state 11. This is known as an essential hazard, so-called because it is part
of the essence of the circuit. Potential essential hazards can be identified from the
transition table if a single input change results in a different final state than if the

00 01 11 10 Q

Ip Enable

Y1Y0

00 00 00 01 0

01 00 00 01 0

11 10 11 01 1

Y1
+ Y0

+

10

11

01

10 00 11 – ––

1a1b

2a

2b

3a

3b

Figure 13.21 Transition table with an essential hazard.

13.4 Asynchronous State Machines 293

input changes three times. The only way to avoid essential hazards is to ensure that
the state variables cannot be fed back around the circuit before the input transitions.
This can be achieved by careful layout or possibly by deliberately introducing delays
into the state variables.

In summary, therefore, the design of an asynchronous sequential circuit has the
following steps.

1. State the design specifications.

2. Derive a primitive flow table.

3. Minimize the flow table.

4. Make a race-free state assignment.

5. Obtain the transition table and output map.

6. Obtain hazard-free state equations.

7. Check for essential hazards.

13.4 Asynchronous State Machines
In the design flow, the first step is to derive the design specifications. In many ways
this is the hardest part of the task. Moreover, if we get that wrong, everything that
follows is also, by definition, wrong. By the nature of the design process, it is almost
impossible to patch a mistake—the entire process has to be repeated. Therefore, it
would be very desirable to ensure that the design has been specified correctly. One
way to do this is to use simulation again.

The state transition diagram of Figure 13.10 is essentially the same as the state
diagram of Figure 6.8 or that of Figure 12.19. Figure 13.10 represents an asyn-
chronous system and the other two represent synchronous systems. This difference
is not, however, apparent from the diagrams. We advocated the use of ASM charts
for the design of synchronous systems, but we could have used state diagrams. We
know that an ASM chart or a state diagram has an equivalent SystemVerilog de-
scription. By the same argument, we can represent an asynchronous state machine
in SystemVerilog. Instead of a set of registers synchronized to a clock, we would
have a virtual buffer, in which the state variable is updated. Therefore, let us write
a SystemVerilog description of the state machine of Figure 13.10.

module async_sm (input logic ip, enable,
output logic q);

enum {a, b, c, d, e, f} present_state, next_state;

always @*

294 Asynchronous Sequential Design

begin
next_state = present_state;
q = ’0;

case (present_state)
a: if (!ip && enable)

next_state = b;
else if (ip && !enable)

next_state = c;

b: if (!ip && !enable)
next_state = a;

else if (ip && !enable)
next_state = f;

c: if (!ip && !enable)
next_state = a;

else if (ip && enable)
next_state = d;

d: if (!ip && enable)
next_state = b;

else if (ip && !enable)
next_state = c;

e: begin
q = ’1;
if (!ip && !enable)

next_state = a;
else if (ip && enable)

next_state = f;
end

f: begin
q = ’1;
if (!ip && enable)

next_state = e;
else if (ip && !enable)

next_state = c;
end

endcase
end

assign #1ns present_state = next_state;

endmodule

13.4 Asynchronous State Machines 295

The virtual buffer has a delay of 1 ns. For this type of model to work, there must
be a finite delay—a zero delay would cause the process to loop infinitely at time 0.
For reasons of space, the entire state machine is not shown; the other states may
be written in the same way. The don’t cares have been assumed to cause the state
machine to stay in the same state. As these represent violations of the fundamental
mode, this is valid. With a suitable testbench, we can use this SystemVerilog model
to reproduce Figure 13.9. Notice that the initial values of the state variables will be
the leftmost entry in the state definition—a.

We can also repeat the exercise after state minimization.

module async_smr (input logic ip, enable,
output logic q);

enum {A, C, E} present_state, next_state;

always @*
begin
next_state = present_state;
q = ’0;

case (present_state)
A: if (ip && enable)

next_state = E;
else if (ip && !enable)

next_state = C;

C: if (!ip)
next_state = A;

E: begin
q = ’1;
if (!ip && !enable)

next_state = A;
else if (ip && !enable)

next_state = C;
end

endcase
end

assign #1ns present_state = next_state;

endmodule

Again, this can be verified by simulation. Indeed, this is one way to check that
the state minimization has been done correctly.

296 Asynchronous Sequential Design

As a second example, consider the following. We wish to design a phase detector
with two outputs: qA and qB. There are also two inputs: inA and inB. Let us assume
both outputs start high. When inA goes high, qA goes low and stays low until inB
goes high. Similarly, if inB goes low first, qB goes low until inA goes high. This sounds
very simple! We will model the phase detector as an asynchronous state machine. It
is left as an exercise for the reader to derive the SystemVerilog model to implement
this specification. You can further test your understanding of asynchronous design
by taking this design through to the gate level.

module phase_detector (input logic inA, inB,
output logic qA, qB);

enum {A, B, C, D, E, F, G, H} present_state,
next_state;

always @*
begin
next_state = present_state;
qA = ’1;
qB = ’1;

case (present_state)
A: if (˜inA && inB)

next_state = E;
else if (inA && ˜inB)

next_state = B;
B: begin

qA = ’0;
if (˜inA && inB)

next_state = D;
else if (inA && inB)

next_state = C;
end

C: if (˜inA && inB)
next_state = D;

else if (inA && ˜inB)
next_state = F;

D: if (˜inA && ˜inB)
next_state = A;

else if (inA && inB)
next_state = H;

E: begin
qB = ’0;
if (inA && inB)

next_state = C;

13.5 Setup and Hold Times and Metastability 297

else if (inA && ˜inB)
next_state = F;

end
F: if (˜inA && ˜inB)

next_state = A;
else if (inA && inB)

next_state = G;
G: begin

qB = ’0;
if (˜inA && ˜inB)

next_state = E;
else if (˜inA && inB)

next_state = D;
end

H: begin
qA = ’0;
if (˜inA && ˜inB)

next_state = B;
else if (inA && ˜inB)

next_state = F;
end

endcase
end

assign #1ns present_state = next_state;

endmodule

One final word of warning: Do not try to synthesize these state machine mod-
els! In the light of the previous discussions, it should be obvious that you would
generate hardware with races and hazards. We have used always @* rather than
always_comb to show that these are not synthesizable models.

13.5 Setup and Hold Times and Metastability
13.5.1 The Fundamental Mode Restriction

and Synchronous Circuits
The fundamental mode restriction requires that an input to an asynchronous circuit
must not change until the circuit has become stable after a previous input change.
Individual flip-flops are themselves asynchronous internally, but are used as syn-
chronous building blocks. We do not, however, speak of the fundamental mode
restriction when designing synchronous systems. Instead, we define setup and hold
times.

298 Asynchronous Sequential Design

Because of the gate delays in a circuit, the fundamental mode restriction does
not mean that two inputs must not change at the exact same time. It means that
the effect of one input change must have propagated through the circuit before the
next input can change. To use the example of a D flip-flop, a change at the D input
must have propagated through the flip-flop before an active clock edge may occur.
Similarly, the effect of the clock edge must have propagated through the circuit
before the D input can change again. These two time intervals are known as the
setup and hold times, respectively.

The setup and hold times of a latch or flip-flop depend on the propagation delays
of its gates. These propagation delays depend, in turn, on parametric variations. So
we can never know the exact setup and hold times of a given flip-flop. Furthermore,
the timing of clock edges may be subject to jitter—the exact period of the clock may
vary slightly. Therefore, there has to be a margin of tolerance in estimating the setup
and hold times. It should finally be noted that some of the effects of ignoring the
fundamental mode restriction, or equivalently, violating setup and hold times, are
not purely digital. In particular, metastability is effectively an analog phenomenon.

Bearing all this in mind, it is possible to get some insight into the consequences of
not observing the fundamental mode restriction by using a SystemVerilog simulator.
We can use specify blocks, introduced in Chapter 10, to verify timing behavior.

13.5.2 SystemVerilog Modeling of Setup and Hold
Time Violations

A structural model of a level-sensitive D latch can be described in SystemVerilog
using gate instances, as shown in the following. If a simulation of this latch is run
using a regular clock and a random event generator for the D input, as shown in the
testbench fragment, it will be observed that the latch works correctly, unless the D
input changes from 0 to 1 in the interval 2 ns or less before a falling clock edge. If
this occurs, the q and qbar outputs oscillate.

Of course, two D latches can be put together to form an edge-triggered flip-flop.
The clock input is inverted for the master flip-flop (introducing a delay of, say, 1 ns).
Thus, when the clock is low, the master flip-flop is transparent. From the previous
simulation, we would expect that the setup time is 2 ns, less the delay in the clock
caused by the inverter, or 1 ns in total. We can verify this by simulation. Again, we
observe that a change in the D input 1 ns or less before the clock edge may cause the
output to oscillate, depending on the state of the flip-flop and whether D is rising
or falling. The six-nand gate edge-triggered D flip-flop behaves similarly. In both
cases, the hold time is 0 ns.

13.5 Setup and Hold Times and Metastability 299

module dlatchnet(output wire q, qbar,
input wire d, c);

wire e, f, g;

not #1ns g0 (e, d);
nand #1ns g1 (f, d, c);
nand #1ns g2 (g, e, c);
nand #1ns g3 (qbar, g, q);
nand #1ns g4 (q, f, qbar);

endmodule

The testbench follows. The $dist_exponential system function is used to
specify a randomized delay. In this function, the mean time to the next event is
specified, but instead of a uniform distribution, half the event times will be between
zero and the mean time, and half will be between the mean time and infinity. This
model is commonly used in queuing theory. Because this function takes an integer,
the timeunit and timeprecision are declared at the start of the testbench. A
seed is used to ensure a different value is returned each time.

module testdlatch;

timeunit 1ns;
timeprecision 100ps;

logic q, qbar, d, c;
int seed;

dlatchnet d0 (.*);

initial
begin
d = ’0;
forever #($dist_exponential(seed, 20)) d = ˜d;
end

initial
begin
c = ’0;
forever #10 c = ˜c;
end

endmodule

300 Asynchronous Sequential Design

Warnings about setup time violations can be generated by including a $setup
system call within a specify block.

specify
$setup(d, negedge c, 2ns);

endspecify

Similarly, hold times can be checked with a $hold system call. Note that the
clock and d inputs would be reversed in the $hold call.

There has to be some doubt as to whether this modeled behavior is exactly
what would be observed in a real circuit. These SystemVerilog models assume that
0 to 1 and 1 to 0 transitions are instantaneous. Of course, in reality, such transitions
are finite. Therefore, if a gate had one of its two inputs rising and the other falling
simultaneously, it would be reasonable to expect that the output might switch into
some state that was neither a logic 1 nor a logic 0 for a period of time. SystemVerilog
does not include such a state; “x” is generally taken to represent a state that could
be one of 1 or 0, but not neither.

13.5.3 Metastability
While the oscillations predicted by both structural models may occur if the funda-
mental mode restriction is violated, another condition can occur that a SystemVerilog
simulation cannot predict. All flip-flops have two stable states and a third unstable,
or metastable, state. In this metastable state, both flip-flop outputs have an equal
value at a voltage level between 0 and 1. A SPICE, or similar transistor-level operat-
ing point analysis is likely to find this metastable condition. This may be likened to
balancing a pencil on its point—in theory, it is stable, but in practice, noise (vibra-
tions, air movement, etc.) would cause the pencil to topple. The metastable state of
a flip-flop is similarly unstable; electrical or thermal noise would cause it to fall into
a stable state.

Metastability is most likely to occur when external (asynchronous) signals are
inputs to a synchronous system. If metastability is likely to be a problem, then care
needs to be taken to minimize its effects. The threat of metastability can never be
entirely eliminated, but there is no point in constructing elaborate defenses if the
chances of its happening are remote. Therefore, the critical question is how likely is
it to occur? The formula used to calculate the mean time between failures (MTBF)
has been found, by experiment, to be:

MT B F =
exp(T × tx)

fclk × fin × T0

13.5 Setup and Hold Times and Metastability 301

tx is the time for which metastability must exist in order for a system failure to occur.
If a metastable state occurs at the output of a flip-flop, it will cause a problem if it
propagates through combinational logic and affects another flip-flip. Therefore,

tx = tclk − tpd − tsetup

where tclk is the clock period, tpd is the propagation delay through any combinational
logic, and tsetup is the setup time of the second flip-flop.

fclk is the clock frequency, fin is the frequency of the asynchronous input
changes, and T and T0 are experimentally derived constants for a particular device.

Let us put some numbers into this formula. The system is clocked at 10MHz;
therefore, tclk is 100 ns. We will examine whether an input flip-flop with a setup time
of 10 ns can go into a metastable state; therefore, tpd is zero and, hence, tx is 90 ns.
If the asynchronous input changes on average, say, once every 10 clock cycles, fin

is 1MHz. For a relatively slow D flip-flop (e.g., a 74LS74), T is about 7×108 sec,
while T0 is 0.4 sec. Therefore,

MT B F =
exp(7 × 108 × 90 × 10−9)

107 × 106 × 0.4
= 5.7 × 1012 sec

or about 200,000 years. Metastability is unlikely to be a problem in such a system.
But suppose the clock frequency is doubled to 20MHz, and hence tx becomes 40 ns.
Now,

MT B F =
exp(7 × 108 × 40 × 10−9)

2 × 107 × 106 × 0.4
= 0.18 sec.

So, we probably will have a problem with metastability in this system.
There are several ways to alleviate the problem. The flip-flop cited above is very

slow. A faster flip-flop would have a larger T and a smaller T0. So, using a faster
flip-flop will increase the MTBF. Another common solution is to use two flip-flops
in series as shown in Figure 13.22.

1D

C1

1D

C1
Synchronous

System

Clock

Asynchronous
Input

Figure 13.22 Synchronizer design.

302 Asynchronous Sequential Design

This arrangement does not necessarily reduce the MTBF, but it does reduce the
possibility that a metastable state is propagated into the synchronous system.

Although it is fairly unlikely that metastability would be observed in a student
laboratory, it is apparent that with increasing clock speeds and perhaps a move
toward a style of design in which there is no global clock, coping with metastability
is going to be a challenge for digital designers.

Summary
The design and analysis of asynchronous circuits is harder than for synchronous
circuits. Asynchronous circuits may be formally analyzed by breaking feedback
loops. The design of an asynchronous circuit starts from a description of all the
possible states of the system. A primitive flow table is constructed, which is then
minimized. State assignment follows. A poor state assignment can result in race
conditions or cycles. From the transition table, next state and output expressions
are derived. Hazards can cause erroneous behavior or oscillations. Essential hazards
may result from uneven delays. The design of asynchronous circuits depends on
observing the fundamental mode restriction. This is reflected in the specification of
setup and hold times for asynchronous blocks used in synchronous design. Failure to
observe these restrictions can lead to spurious behavior and possibly metastability.

Further Reading
Although the design of asynchronous (or level-mode or fundamental mode) sequen-
tial circuits is covered in many textbooks, close reading reveals subtle variations in
the techniques. Hill and Peterson [10] provide a very good description. Wakerly
[25] has a very straightforward explanation. Unger’s 1995 paper [23] has provided
perhaps the most rigorous analysis of the problems of metastability. The Amulet
project has one of the most significant large asynchronous designs and the Web
site (www.cs.man.ac.uk/amulet/index.html) has links to many sources
of information about asynchronous design.

Exercises
13.1 What is the difference between a synchronous sequential circuit and an

asynchronous sequential circuit? Why is synchronous design preferred?

13.2 What assumption is made in the design of fundamental-mode sequential
circuits and why? How can essential hazards cause the fundamental mode to
be violated?

www.cs.man.ac.uk/amulet/index.html

Exercises 303

13.3 The excitation equation for a D latch may be written as

Q+ = C · D + Q · C̄

Why would a D latch implemented directly from this transition equation be
unreliable? How would the D latch be modified to make it reliable?

13.4 Describe, briefly, the steps needed to design an asynchronous sequential
circuit.

13.5 Figure 13.23 shows a master-slave edge-triggered D flip-flop. How many
feedback loops are there in the circuit, and hence how many state variables?
Derive excitation and output equations and construct a transition table.
Identify all races and decide if the races are critical or non-critical. Construct
a state and output table and show that the circuit behaves as a positive
edge-triggered flip-flop.

13.6 Figure 13.24 shows a state diagram of an asynchronous circuit with two
inputs, R and P, and a single output, Q. The input values are shown on the
arcs; the state names and the output values of the stable states are shown in
the circles. Design an asynchronous circuit to implement this function.

13.7 A positive edge-triggered D flip-flop has set and reset inputs, in addition to
the clock and D inputs (Figure 13.4). Write down the state equations for the
flip-flop including the set and reset inputs. Hence, write a transition table.

13.8 Table 13.3 shows the transition table for an asynchronous circuit. Identify all
the non-critical races, critical races, and cycles (a cycle is a repeated series of
unstable states that requires an input to change in order for a stable state to
be reached).

D

C

Figure 13.23 Circuit for Exercise 13.5.

304 Asynchronous Sequential Design

A/0

B/0

C/0 D/1

E/0

F/0

01

00

00

10
10

00

11

00
10

01
01

11

11

01

01

00

10

11

Figure 13.24 State diagram for Exercise 13.6.

Table 13.3 Transition Table for Exercise 13.8

AB

Y1Y2 00 01 11 10

00 00 11 10 11
01 11 01 01 10
11 10 11 01 10
10 11 10 01 01

Y1*Y2*

13.9 Design a D flip-flop that triggers on both the positive and negative edges of
the clock pulse.

13.10 An asynchronous sequential circuit has two inputs, two internal states, and
one output. The excitation and output functions are:

Y1+ = A · B + A · Y2 + B̄ · Y1
Y2+ = B + A · Y1 · Y2 + Ā · Y1
Z = B + Y1

(a) Draw the logic diagram of the circuit.

(b) Derive the transition table and output map.

(c) Obtain a flow table for the circuit.

14Interfacing with the
Analog World

In previous chapters, we considered the world to be purely digital. Indeed, with
the exception of Chapter 13, we further considered only synchronous systems. Of
course the real world is asynchronous and, even worse, analog. All digital systems
must at some point interact with the real world. In this chapter, we consider how
analog inputs are converted to digital signals and how digital signals are converted to
analog outputs. Until relatively recently, the modeling and simulation of digital and
analog circuits and systems would have been performed independently of each other.
A set of analog and mixed-signal extensions to Verilog (but not yet SystemVerilog)
has been proposed. The language is commonly known as Verilog-AMS (analog
and mixed-signal). Verilog-AMS is a complete superset of the 2005 standard for
Verilog. At some point in the future, it is likely that SystemVerilog-AMS will appear,
but meanwhile, simulators that support mixtures of Verilog, Verilog-AMS, and
SystemVerilog exist.

Having looked at digital-to-analog converters (DACs) and analog-to-digital con-
verters (ADCs), we will review the basics of Verilog-AMS and see how ADCs and
DACs can be modeled in Verilog-AMS. There is insufficient space to provide a com-
plete tutorial of Verilog-AMS here. Furthermore, it should be remembered that we
are only considering simulation models, designed for verifying the interaction of a
digital model with the real world. Synthesis of analog and mixed-signal designs is still
a research topic. The final section of this chapter looks at some further mixed-signal
circuits and their models in Verilog-AMS.

305

306 Interfacing with the Analog World

14.1 Digital-to-Analog Converters
We start the discussion of interface circuits with DACs because, as we will see,
one form of ADC requires the use of a DAC. The motivation in this chapter is not
to describe every possible type of converter—that would require at least an entire
book—but to show one or two examples of the type of circuit that can be employed.

In moving between the analog and digital worlds, we ideally want to preserve the
maximum amount of information. This can be summarized in terms of three aspects:
resolution, accuracy, and speed. Resolution defines the smallest change that can be
measured. For example, 8 bits can represent 28 or 256 voltage levels. If we want
to represent a signal that changes between 0 V and 5 V using 8 bits, the resolution
is 5/256 = 19.5 mV. Accuracy describes how precisely a signal is represented with
respect to some reference. In turn, this depends on factors such as linearity. For
example, while 8 bits can represent a 5 V signal with an average resolution of
19.5 mV, differences (non-linearities) in the circuit might mean that some changes
are really 18.5 mV, while others are 20.5 mV. These differences will add up and
affect the overall accuracy. Finally, the speed at which data is converted between
the two domains affects the design of converters. In the digital world, samples are
taken at discrete points in time. The users of converters need to be aware of what
happens between these sample points.

The simplest type of DAC is the binary-weighted ladder circuit of Figure 14.1.
The bits are added together according to their relative weights. The operational
amplifier forms a classic (inverting) adder. While this circuit is easy to understand,
it is difficult to manufacture. The resistors have to be made with very tight tolerances.
Any inaccuracy in a resistor value would affect the accuracy. Note that the resistors
have to be accurate with respect to the feedback resistor (R), but also with respect
to each other.

–

+

8R

4R

2R

R

R

MS B

LSB

Figure 14.1 Binary-weighted ladder DAC.

14.2 Analog-to-Digital Converters 307

–

+

2R

2R

2R

2R

R

MSB

LSB

2R

R

R

R

0

Figure 14.2 Binary-weighted R-2R ladder DAC.

A variation on the binary-weighted ladder is the R-2R ladder of Figure 14.2. To
a significant extent, this overcomes the manufacturing problem as only two values
of resistor need to be constructed.

For both these circuits, the speed is limited only by the response of the opamp.
In practice, however, we might find that the resistors are more easily implemented
as switched capacitors.1 If this is so, the speed is limited by the clock. Notice also
that the output changes in discrete steps.

14.2 Analog-to-Digital Converters
The task of an ADC is to translate a voltage (or current) into a digital code. This
is generally harder to achieve than the reverse process. Again, we need to consider
resolution, accuracy, and speed, but for example, suppose we have a signal that
changes between 0 V and 5 V, with a maximum frequency of 10kHz. Eight bits
gives a resolution of 19.5 mV. To accurately capture changes in a signal, it needs to
be sampled at twice its maximum frequency. Here, therefore, we need to sample at
20kHz or greater.

1. In CMOS technology, it is generally easier to build matched capacitors than matched resistors. It is
possible to emulate the behavior of a resistor by rapidly switching a capacitor between an input and
ground.

308 Interfacing with the Analog World

PRIORITY
ENCODER

A(1)
A(0)

Y(0)

A(2)
A(3)

Y(1)A(5)
A(4)

A(6)
A(7)

Y(2)

Vin

–
+

–
+

–
+

–
+

–
+

–
+

–
+

–
+

Vref

R

R

Figure 14.3 Flash ADC.

Conceptually, the simplest ADC is the flash ADC of Figure 14.3. This consists
of nine identical resistors (for eight voltage levels) and eight comparators. As the
input voltage, Vin, increases past a level in the resistor chain, the corresponding
comparator output switches to 1. Therefore, we can use a priority encoder to deter-
mine which is the most significant bit, and to encode that value as a binary number.
It should be immediately obvious that this circuit is impractical for large numbers
of bits. We need 2n identical, ideal comparators and 2n + 1 identical resistors to
achieve n bits at the output. It is very difficult to achieve high consistency and hence
high accuracy. On the other hand, this type of converter is very fast. In practice, the
cost of a flash ADC is usually too high. In return for a smaller design and better
accuracy, we pay the price of slower conversion speeds.

Figure 14.4 shows a tracking ADC. This is much easier to implement than the
flash ADC. It is essentially a DAC, a comparator, and a counter. When the value
in the counter is greater than that of the input, Ain, the counter counts down;
when the counter’s value is less than Ain, the counter counts up. Therefore, the
counter attempts to track the input. As might be expected, a very high clock speed
is needed to make this work. Suppose we wish to convert an audio signal with a
maximum frequency of 20kHz. We need to sample at twice this frequency—40kHz.

14.2 Analog-to-Digital Converters 309

COUNTER

1

2

4

8

UP/DOWN–
+

8R

4R

2R

R

R

–
+

Clock

Reset

AinDAC

Dout

Aout
Up

Figure 14.4 Tracking ADC.

In the worst case, the counter needs to count through its entire range, 24 or 16
states, between samples. This means that the counter clock must be 16 × 40kHz
or 640kHz. On the other hand, to achieve CD quality resolution, we would need
16 bits at the output, which implies a clock speed of nearly 3GHz. This is clearly
much less practical.

For high-speed, high-resolution applications, an entirely different approach
is usually taken. Delta-sigma ADCs convert from voltage to a serial encoding.
Figure 14.5 shows a simple delta-sigma ADC. The mark-to-space ratio of the output
is proportional to the ratio of the input voltage to some reference, Vref, (as set by the

Vin

Integrator
Comparator

Flip-flop

1-bit DAC

+

–
+

–

Figure 14.5 Delta-sigma ADC.

310 Interfacing with the Analog World

DAC). Let us assume that the DAC output is at Vref. When Vin is less than Vref, the
output of the first comparator is negative. This causes the integrator output to ramp
downward. When that output crosses zero (possibly after several clock cycles), the
output of the second comparator goes negative. At the next clock edge, a 0 is stored
in the flip-flop, causing the DAC to output zero. Now the first comparator causes
the integrator to start ramping upward. Again, this might take several clock cycles.
In this way, the mark-to-space ratio of the output is changed. This type of converter
is widely used in digital audio applications. The resolution is determined by the
clock frequency. As with the tracking ADC, for high resolution, a very high clock
speed is needed. However, by using differential coding methods (in other words, by
recording changes rather than absolute signal values), the clock speed requirement
can be significantly reduced.

In the following section, we will see how some of these circuits can be modeled
in Verilog-AMS. It should be borne in mind that these models simply describe the
functional behavior of converters. We have already noted that DACs and ADCs are
subject to limitations in terms of accuracy, resolution, and speed. Very often it is
necessary to model these imperfections and to use the results of such simulations
to determine the most suitable designs. As with much else in this chapter, detailed
modeling of converter circuits could comprise yet another complete book.

14.3 Verilog-AMS
Verilog-AMS is a superset of Verilog (2005) (see Appendix). Several new keywords
and constructs have been added to allow modeling of physical systems. The standard
defines the interaction between a standard Verilog simulator and an analog solver.
It is important to realize that Verilog-AMS is not “analog Verilog”, but a true
mixed-signal modeling language. Moreover, Verilog-AMS has been designed to
allow modeling of general physical systems, not simply electrical networks.

14.3.1 Verilog-AMS Fundamentals
Verilog-AMS introduces some important new concepts. The most important of
these can be summed up by the keywords: discipline and nature. In “standard”
Verilog, a net represents a physical wire. When we display the results of a simulation,
we can observe the changes of state of that wire over time. Therefore, a net covers two
ideas: a physical connection and a time history. In electrical and other networks,
these two ideas need to be separated. An electrical node represents the point at
which two or more components are connected. We cannot, however, talk about the
behavior of that node, unless we specify whether we are referring to its voltage or
current or some other aspect.

14.3 Verilog-AMS 311

To distinguish between the physical connection and the behavior, Verilog-AMS
introduces new keywords. The voltage or current at a node is declared as a nature.
Before giving an example, however, we need to explain how natures and nodes
relate to each other.

A node belongs to a particular type of network. For example, an electrical node
belongs to an electrical network; a magnetic node belongs to a magnetic network.
Each type of network has behavior that can be described in terms of natures. So, for
example, the behavior of an electrical network can be described in terms of voltages
and currents, while the behavior of a magnetic network can be described in terms
of magneto-motive force and flux. Each type of network has a pair of natures. These
can be described as flow and potential natures. For example, in an electrical
network, current flows from one node to another through network components,
while we can also measure the voltage potential across such components. Each
type of network has such a pair of flow and potential natures. (Note that it is also
possible to define an electrical network in which currents are thought of as the
potential natures and voltages are thought of as the flow natures. Mathematically,
either convention is acceptable. The first convention is more common, however,
and we will stick with that. In other kinds of networks, the decision about which
quantity is potential and which is flow may be less clear.)

In declaring that a node belongs to a particular kind of network, we are effec-
tively defining the flow and potential natures for that net. Therefore, it would not be
adequate to declare a net to be of a particular Verilog type. Instead, a new construct
is used—a discipline. A discipline has two parts: a potential nature and a flow
nature. Additionally, a domain can be declared: continuous or discrete. By
default, disciplines are continuous.

An electrical discipline might be declared as:

discipline electrical
potential Voltage;
flow Current;

enddiscipline

As elsewhere, the keywords are highlighted. What are Voltage and Current?
We know that the potential and flow parts are natures, so Voltage and Current must
be natures:

nature Voltage
units = "V";
access = V;
idt_nature = Flux;
abstol = 1e-6;

endnature

312 Interfacing with the Analog World

nature Current
units = "A";
access = I;
idt_nature = Charge;
abstol = 1e-12;

endnature

Each of these declarations has four parts, but not all need to be declared.
First, units shows the symbol used for that nature. Verilog-AMS does not perform
dimensional analysis, so this is simply to provide readability. Second, an access

function is given. This allows, for example, the voltage at node1 to be referenced
by writing V(node1). The third part, idt_nature, shows the nature that results
when this quantity is integrated with respect to time. It is also possible to declare
the time derivative, ddt_nature. In this case, Flux and Charge would be declared
elsewhere. Finally, the abstol or absolute tolerance is declared. This defines the
accuracy to which variables of that nature should be calculated.

In the examples that follow, we will assume that the definitions of the elec-
trical discipline are contained in a file, disciplines.vams, that is included at
the start of each model. We can now define one or more nodes with the electrical
discipline:

electrical node1, node2;

Nodes can be declared within modules (in exactly the same way as nets) or as
ports. In port declarations, the direction must be specified as inout. For example,
the module declaration of a resistor might be:2

‘include "disciplines.vams"
module resistor (node1, node2);
inout node1, node2;
electrical node1, node2;
parameter real R = 1;

At this point, we have only created the physical nodes. We can refer to the
current flowing between those nodes by I(node1, node2) or we can declare one
or more branches. A branch between the two nodes would be declared as:

branch (node1, node2) res;

2. Note that this is written in the Verilog 1995 style. The latest version of the standard supports the
Verilog 2005/SystemVerilog style of headers, but at the time of writing, this is not supported by any
simulators.

14.3 Verilog-AMS 313

Now the current can be referred to as I(res).
The reference node is the name of the terminal with respect to which all across

quantities are calculated. In electrical networks, this is often known as the ground
or earth node. In a Verilog-AMS model, this can be declared with:

ground gnd;

14.3.2 Contribution Statements
Contribution statements define the network equations of analog models. Contribu-
tion statements use the symbol “< +” to show how an expression contributes to the
overall set of network equations. Note that this is not an assignment in the conven-
tional sense, as multiple contributions to the same flow or potential are summed.

The contribution statements are therefore the simultaneous equations that are
solved by the analog simulator. Contribution statements must be put within an
analog procedural block. In order to illustrate a contribution statement, we will
give a complete model of a resistor:

‘include "disciplines.vams"
module resistor (node1, node2);
inout node1, node2;
electrical node1, node2;
parameter real R = 1;
branch (node1, node2) res;

analog begin
I(res) <+ V(res)/R;

end

endmodule

We can model other components in a similar way. For example, a capacitor can
be modeled as follows:

‘include "disciplines.vams"
module capacitor (node1, node2);
inout node1, node2;
electrical node1, node2;
parameter real C = 1;
branch (node1, node2) cap;

analog begin
I(cap) <+ C*ddt(V(cap));

end

endmodule

314 Interfacing with the Analog World

The ddt function evaluates the time derivative. Similarly, there is an idt func-
tion for calculating the time integral. Because the contribution statement is an al-
gebraic expression and not an assignment, it is also possible to write the capacitor
equation as:

V(cap) <+ idt(I(cap))/C;

Before leaving these basic models, let us consider a pure voltage source that
generates a sine wave. We will need a version of this element to describe a DAC.

‘include "constants.vams"
‘include "disciplines.vams"

module vsin(a,b);
inout a,b;
electrical a,b;
branch(a,b) vs;
parameter real vo = 1;
parameter real va = 1;
parameter real freq = 1;

analog begin
V(vs) <+ vo + va * sin(‘M_TWO_PI*freq*$abstime);

end
endmodule

The file constants.vams defines a number of useful constants, including
M_TWO_PI – 2π . $abstime is the current simulation time. This is analogous to the
simulation time in “standard” Verilog—$time—but is a real number.

14.3.3 Mixed-Signal Modeling
Verilog-AMS is a mixed-signal modeling language. Therefore, we can mix analog
and digital constructs in the same models. Let us consider a simple comparator. We
want to convert two analog voltages into a 1-bit digital signal, such that the output
is a logic 1 when the the first input is greater than the second and 0 otherwise. The
model is written as:

‘include "disciplines.vams"
module comp(Aplus, Aminus, Dout);
inout Aplus, Aminus;
electrical Aplus, Aminus;
output Dout;
reg Dout;

14.3 Verilog-AMS 315

initial
begin
Dout = 1’b1;
forever

begin
@(cross(V(Aplus, Aminus), -1)) Dout = 1’b0;
@(cross(V(Aplus, Aminus), +1)) Dout = 1’b1;
end

end

endmodule

This module has three ports—two are electrical nodes and one is a digital net.
In the module body, we need to detect when one voltage becomes greater or less
than the other and switch the output accordingly. This could be done with a simple
comparison operator, but it is better to use thecross function. When the expression
crosses zero, an event is created for the digital signal. A second parameter is used
to specify the direction if only one crossing direction should trigger the event— +1
for positive, –1 for negative, and 0 or unspecified for either direction. The cross
function, however, does not trigger an event for the initial conditions. Thus, an initial
block is created to give Dout an initial value and the rising and falling transitions
are tested to generate events and to change Dout.

This example simply converts a signal to 1 bit. We can use the comparator as
part of a flash ADC (see Section 14.2 and Exercise 14.5). Later, we will use the
comparator again as part of a tracking ADC. We can, however, also model a flash
ADC behaviorally. We simply need to convert a varying (real) quantity into a bit
vector. In the example that follows, the model is parameterized in terms of the
analog voltage range and the number of bits. We also include a clock to sample the
waveform—otherwise, the model will be evaluated at every analog time step. Dmax
is set to all 1s and then converted to a real number to scale the result.

‘include "disciplines.vams"
module adc(Dout, Ain, clock);
parameter N = 8;
parameter real Vrange;
output [N-1:0] Dout;
reg [N-1:0] Dout;
inout Ain;
electrical Ain;
input clock;

parameter [N-1:0] Dmax = {N{1’b1}};

316 Interfacing with the Analog World

always @(posedge clock)
Dout <= V(Ain)/Vrange*real(Dmax);

endmodule

In the following example, a DAC is modeled as a voltage source and resistance
in the analog world. The voltage source can take one of three values—V1, V0, or
Vx for logic 1, logic 0, or unknown, respectively. Similarly, the output resistance can
take a low impedance value or a high impedance value.

To convert from analog quantities to digital signals, we write procedural state-
ments. To convert the other way, we need to write contribution statements. There is
a catch, however. In discrete simulation (“standard” Verilog), signals change instan-
taneously. In a continuous simulation, instantaneous step changes cause problems.

Without going into great detail, an analog or continuous solver approximates a
changing quantity by taking discrete time steps. The waveform is therefore approxi-
mated by a polynomial expression. The size of these time steps is varied to minimize
the error in the polynomial. A large step change makes it impossible to construct a
polynomial expression across that change, so the error is considered large and the
time step is reduced in an attempt to minimize the error. No matter how small the
time step is made, the error will remain large and the simulation fails.

One way to avoid instantaneous changes is to force a transition to occur in a
finite time. This can be done with the transition function. The values of the
voltage and resistance are held as variables within the analog block of the DAC
model. When the input signal changes, these variables are updated. An expression
for the output voltage in terms of these signals can then be written as a contribution
statement. Note that changes in the signals are slowed by 1 ns (expressed as a real
number) using the transition function.

‘include "disciplines.vams"

module dac(Din, Aout);

input Din;
inout Aout;
electrical Aout;

parameter real V1 = 5.0;
parameter real V0 = 0.0;
parameter real Vx = 2.5;
parameter real Zhi = 1e9;
parameter real Zlo = 1;

real Zth, Vth;

14.3 Verilog-AMS 317

analog begin
Zth = (Din === 1’bz) ? Zhi: Zlo;
Vth = (Din === 1’b0) ? V0 :

(Din === 1’b1) ? V1 : Vx;
V(Aout) <+ transition(Vth, 1e-9)

- I(Aout)*transition(Zth, 1e-9);
end

endmodule

The obvious disadvantage of this approach is that the time to change between
values has to be specified. 1 ns might easily be far too large or far too small com-
pared with other changes in the system. It would be better to let the solver decide
for itself what would constitute a suitable change. For this to happen, the solver
needs to be told that there could be a problem, and this is the responsibility of the
model writer. Verilog-AMS includes a mechanism for indicating a discontinuity—
the $discontinuity function.

‘include "disciplines.vams"

module dac(Din, Aout);

input Din;
inout Aout;
electrical Aout;

parameter real V1 = 5.0;
parameter real V0 = 0.0;
parameter real Vx = 2.5;
parameter real Zhi = 1e9;
parameter real Zlo = 1;

real Zth, Vth;

analog begin
@(Din) $discontinuity;
case (Din)

1’b0 : V(Aout) <+ V0 - I(Aout) * Zlo;
1’b1 : V(Aout) <+ V1 - I(Aout) * Zlo;
1’bz : V(Aout) <+ Vx - I(Aout) * Zhi;
1’bx : V(Aout) <+ Vx - I(Aout) * Zlo;
endcase

end

endmodule

318 Interfacing with the Analog World

When Din changes, the analog solver stops and restarts, therefore avoiding
the error detection mechanism. Each branch of the case statement consists of one
contribution statement, modeling a Thévenin equivalent circuit.

If we wish to convert several bits to an analog equivalent, we could use a 1-bit
DAC for each input bit and add the outputs together, with appropriate weighting. If
we are not concerned with converting X and Z bits, it is easier to simply convert the
bits to a real number as follows. Notice that the output is scaled to a parameter, Vref.

‘include "disciplines.vams"
module NbitDac(Din, Aout);
parameter N = 8;
parameter real Vref = 1.0;
input [N-1:0] Din;
inout Aout;
electrical Aout;

analog
V(Aout) <+ Din*Vref/((1<<N)-1);

endmodule

We now have the necessary parts to build the tracking ADC from Section
14.2. We also need the counter from Exercise 5.5. This has been written as a self-
contained testbench. Notice that we have created a netlist in exactly the same way as a
digital netlist, the only difference being that the analog nodes needed for connecting
components are declared as electrical nodes.

‘include "disciplines.vams"
‘timescale 1 ns / 100 ps

module tracking;

electrical Ain, Aout, gnd;
ground gnd;
wire Up;
wire [3:0] Dout;

reg Clock, Reset;

initial
begin
Clock = 1’b0;
forever

#10 Clock = ˜Clock;
end

14.4 Phased-Locked Loops 319

initial
begin

Reset = 1’b1;
#2 Reset = 1’b0;
end

UpDown #(.N(4)) C1 (.clk(Clock), .reset(Reset),
.up(Up), .Count(Dout));

NBitDac #(.N(4), .Vref(5.0)) D1
(.Din(Dout), .Aout(Aout));

comp O1 (.Aplus(Ain), .Aminus(Aout), .Dout(Up));
vsin #(.vo(2.5), .va(2.5), .freq(1e4)) V1

(.a(Ain), .b(gnd));

endmodule

14.4 Phased-Locked Loops
Although ADCs and DACs are the main interfaces between the analog and digital
worlds, another class of circuits also sits at this boundary. One of the major uses for
phase-locked loops (PLLs) is for generating clocks. PLLs can be used to recover
the clock from a stream of data. A PLL can also be used to “clean up” a clock that
has an irregular period and to multiply a clock signal to create a higher frequency
signal. All of these tasks are difficult to achieve with conventional digital circuit
techniques. PLLs can be built as purely analog circuits, purely digital circuits, or
using a mixture of methods. As with ADCs and DACs, there is not enough space in a
book like this to give any more than a brief introduction to PLLs. The purpose here
is to show a simple example and to illustrate one way of modeling that example in
Verilog-AMS. As with ADCs and DACs, the real art of modeling PLLs is to capture
non-linearities and other imperfections to determine whether a particular design
will work in a particular context.

Figure 14.6 shows the basic structure of a PLL. The phase detector determines
the difference between the input (ref clk) and the stabilized output (vco out). The
phase detector could be an analog four-quadrant multiplier, a digital XOR gate, or a
sequential digital circuit. The output from the phase detector is a sequence of pulses.
The low pass filter averages these pulses in time. This filter is crucially important to
the working of the PLL. If the time constant is too small, the PLL will not settle into
a regular “locked” pattern. If the time constant is too great, the PLL may not lock
at all. The voltage controlled oscillator (VCO) converts the output of the filter into
a oscillation whose frequency is determined by the filter output voltage. The VCO
is likely to be the hardest part of the design. It can only oscillate within a relatively

320 Interfacing with the Analog World

Phase Detector
Low Pass

Filter VCO

Counter

ref_clk
vco_out

Figure 14.6 PLL structure.

narrow band of frequencies. Finally, the counter is optional. By dividing the VCO
output, the phase detector compares with this reduced frequency output. In other
words, the VCO output must be a multiple of the input frequency.

There are many books about PLL design, but perhaps the best way to un-
derstand their operation is by playing with the circuit parameters in a simulation.
Therefore, we will simply present one, ideal, model of a PLL.

We start with the largest model—the phase detector. We will use the example
from Chapter 13. The two outputs, qa and qb, correspond to two control signals, up
and down, respectively. These need to be converted to analog voltages and filtered.
We will use two instances of the 1-bit DAC from the previous section. The low
pass filter can be modeled using the Laplace transform attribute in Verilog-AMS.
This attribute takes two parameters, each of which is a vector of real numbers. The
first vector contains the coefficients of the numerator and the second contains the
coefficients of the denominator. Here we want to create a parameterized low pass
filter, which in the s-domain has the transfer function:

1
1 + sT

.

Therefore, the numerator has the value 1.0, and the denominator has the values
1.0 and T. Hence, this is the Verilog-AMS model. Although this is a frequency
domain model, it can be interpreted in the time domain. Similarly, time domain
models (such as ddt(v)) can be interpreted in the frequency domain.

‘include "disciplines.vams"

module lpf (Ao, Ai);

14.4 Phased-Locked Loops 321

inout Ao, Ai;
electrical Ao, Ai;

parameter real T = 1e-6 from [0:inf);

analog
V(Ao) <+ laplace_nd(V(Ai), {1}, {1, T});

endmodule

Notice that the range of the parameter, T, is limited to positive real numbers by
using the from modifier. The mixture of square and round brackets means that 0
can be included in the range of possible numbers, but that infinity is excluded.

The voltage controlled oscillator is mixed-signal, but can be written using a
Verilog process.

‘include "disciplines.vams"
‘timescale 1 s / 100 ps

module vco(Ina, Inb, vout);

inout Ina, Inb;
output vout;
electrical Ina, Inb;
reg vout;

parameter real gain = 5e5;
parameter real fnom = 2.5e5;
parameter real vc = 2.5;

real frequency;
real period;

always
begin
frequency = fnom + (V(Ina) - V(Inb) - vc) * gain;
if (frequency > 0.0)

period = 1/frequency;
else

period = 1/fnom;
#(period/2) vout = 1’b1;
#(period/2) vout = 1’b0;
end

endmodule

322 Interfacing with the Analog World

Note that there are Verilog-AMS extensions, even within the always block. The
values of the input quantities are found using the V() function call and the wait
statements take real numbers, not time units.

The counter is purely digital, although we will use it in an asynchronous way.
This is a SystemVerilog model—we are assuming the simulator can accept a mixture
of languages and versions.

module counter #(parameter N = 4)
(output reg count,
input clk);

integer cnt = 0;

always_ff @(posedge clk)
begin
cnt++;
if (cnt == N)

begin
cnt = 0;
count <= 1’b1;
end

else
count <= 1’b0;

end

endmodule

Finally, we can put all the parts together and include a suitable stimulus.

‘include "disciplines.vams"
‘timescale 1 ns / 100 ps

module pll;

electrical up, down, up_a, down_a;
wire up_d, down_d, VCO_out, VCO_div;

reg ref_clk;

initial
begin
ref_clk = 1’b0;
forever

#5000 ref_clk = ˜ref_clk;
end

Summary 323

phase_detector P0 (.inA(ref_clk), .inB(VCO_div),
.qA(up_d), .qB(down_d));

dac D0 (.Din(up_d), .Aout(up_a));
dac D1 (.Din(down_d), .Aout(down_A));
lpf #(50e-6) L0 (.Ai(up_a), .Ao(up));
lpf #(50e-6) L1 (.Ai(down_a), .Ao(down));
vco #(.gain(1e5), .fnom(8e5), .vc(2.5)) V0

(.Ina(down), .Inb(up), .vout(VCO_out));
counter #(5) C0 (.clk(VCO_out), .count(VCO_div));

endmodule

Simulation of this PLL model shows that the output frequency varies between
about 450kHz and 600kHz, before settling at 500kHz after about 260 μs. The clock
has a frequency of 100kHz and the counter counts to 5, so the PLL behaves exactly
as we would expect.

14.5 Verilog-AMS Simulators
It could be argued that the mixed-signal models of ADCs, DACs, and PLLs could
be modeled entirely in standard Verilog. Indeed, there is a very limited amount of
behavior that requires an analog solver in these models. The real power of Verilog-
AMS is that it allows digital Verilog models to be simulated at the same time as analog
circuits that would traditionally have been simulated with SPICE. It is possible to in-
clude SPICE netlists within Verilog-AMS. Many simulators are now multi-language.
It is therefore possible to have models written in combinations of the various di-
alects of Verilog and SystemVerilog, Verilog-AMS, SPICE, VHDL, VHDL-AMS,
and SystemC.

Summary
At some point, digital circuits have to interface with the real, analog world. Modeling
this interface and the interaction with analog components has always been difficult.
Verilog-AMS extends Verilog to allow analog and mixed-signal modeling. Typical
converters include ladder DACs, flash ADCs, delta-sigma ADCs, and PLLs. All of
these components can be modeled and simulated in Verilog-AMS. There is, as yet,
no way to automatically synthesize such elements from a behavioral description.
Verilog-AMS simulators are still relatively new and may not support the entire
language. They do, however, provide means for interfacing between SPICE models
and Verilog-AMS, allowing modeling of complete systems.

324 Interfacing with the Analog World

Further Reading
For an explanation of analog simulation algorithms, see Litovski and Zwolinski
[12]. Horowitz and Hill [31] is an excellent guide to practical circuit design and
includes descriptions of ADCs, DACs, and PLLs. For a full description of Verilog-
AMS, the LRM is, of course, invaluable. Manufacturers’ manuals need to be read
with the LRM to understand any limitations.

Exercises
14.1 An inductor is described by the equation vL = L · diL

dt . Write a Verilog-AMS
model of an inductor, using the ddt function.

14.2 Write an inductor model that uses the idt function.

14.3 Write a parameterizable model of a voltage source that generates a ramp.
The parameters should be initial voltage, final voltage, delay before the ramp,
and rise (or fall) time.

14.4 Write a model of voltage source that generates a pulse. What parameters
need to be specified? How is it made to repeat?

14.5 Write a Verilog-AMS model of the flash ADC shown in Figure 14.1.

ASystemVerilog
and Verilog

A.1 Standards
The current standard of SystemVerilog is published by the IEEE and Accellera, an
industry-based standards association. It is given the number 3.1a, which indicates
that it is the third major revision of Verilog. These are the SystemVerilog and Verilog
standards.

IEEE Standard 1800-2005/IEC 62530:2007
This is the LRM. This, however, only defines the extensions to the Verilog standard—
1364-2005. To get a full definition of SystemVerilog, both LRMs are needed.

IEEE Standard 1364-2005
This is the latest standard for Verilog. There was also a 2001 version, but the changes
are relatively minor.

IEEE Standard 1364-1995
The original Verilog standard. Most of the open source tools conform only to this
standard.

325

326 SystemVerilog and Verilog

IEEE Standard 1364.1-2002/IEC 62142-2005
Verilog RTL synthesis standard. This defines what is and what is not synthesizable.
It is based on the 2001 Verilog standard.

Accellera Verilog-AMS 2.3-2008
Verilog-AMS. This is based on the 2005 Verilog standard. There is also a Verilog-A
subset that includes only the continuous time elements. It is an ambition of Accellera
to create SystemVerilog-AMS.

A.2 SystemVerilog and Verilog Differences
There are, of course, a very large number of additions to the basic syntax of Verilog in
SystemVerilog. Features such as assertions, classes, and programs have been added.
The purpose of this section is to show changes to the two older versions of Verilog
that affect RTL hardware modeling and hence to show how the examples in this
book might be modified to work with tools that support only these earlier standards.
As an illustration, we will use the state machine modeling the traffic light controller
of Section 6.5.1.

Verilog 2005
The Verilog 2005 version of the state machine is shown in the following paragraphs.
SystemVerilog is a superset of Verilog 2005, so this is valid SystemVerilog code. The
important changes from the SystemVerilog version are:

• always_ff is replaced by always. Arguably, always_ff is redundant
because the meaning and syntax of the two forms are identical.

• always_comb is replaced by always @(*). The sensitivity list is a wild card,
which means that any variables or nets used as inputs to the block are
automatically included.

• logic is replaced by reg. The two forms are interchangeable in
SystemVerilog, but logic clearly means a logic type, whereas reg might be
mistakenly assumed to refer to a register.

• There are no enumerated types in Verilog. The construct is faked in Verilog
by declaring a variable with sufficient bits to hold all the states and then
declaring parameter values for each state. Here, two states can be
represented by a single bit. Four states, for example, would be declared using

A.2 SystemVerilog and Verilog Differences 327

reg [1:0]. The clear disadvantage of this approach is that the state
assignment is done at the same time that the state machine is designed.

• Bit strings of undefined length, such as ’0 are not permitted. The string
length must be specified, for example, 1’b0.

• SystemVerilog makes no distinction between variables and nets in
assignments. In Verilog, variables must be assigned values in procedures;
nets (wires) must only be assigned values in continuous assignments.

module traffic_1_05 (output reg start_timer,
major_green, minor_green,
input reg clock, n_reset, timed,
car);

reg state;
parameter G=0, R=1;

always @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

state <= G;
else

case (state)
G: if (car)

state <= R;
R: if (timed)

state <= G;
endcase

end

always @(*)
begin: OP
start_timer = 1’b0;
minor_green = 1’b0;
major_green = 1’b0;
case (state)

G: begin
major_green = 1’b1;
if (car)

start_timer = 1’b1;
end

R: minor_green = 1’b1;
endcase
end

endmodule

328 SystemVerilog and Verilog

Verilog 1995
The Verilog 1995 version of the state machine follows. SystemVerilog and Verilog
2005 are both supersets of Verilog 1995, so this is valid code for both later versions.
The important changes from the Verilog 2005 version are:

• So-called ANSI C-style module headers are not permitted. Instead, the input
and output signal names only are written in the header. Then, the signal
modes must be declared: input, output, or inout. Finally, any outputs of
type reg must be declared—the default is wire. Thus, outputs may be listed
three times.

• The separator between items in sensitivity or event lists must be or,
not a comma. This is not a logical OR of Boolean values, but an OR of
events.

• Wild cards are not permitted in sensitivity lists. Every input to the
combinatorial process must be listed. “Inputs” include anything on the
right-hand side of an assignment or anything in the decision part of an if or a
case statement. This is a source of potential significant error. If an input is
missing, the process will not be simulated correctly, but a synthesis tool is
likely to “correct” the mistake. Thus, there would be a mismatch between
synthesis and simulation.

module traffic_1_95 (start_timer, major_green,
minor_green, clock, n_reset,
timed, car);

output start_timer, major_green, minor_green;
input clock, n_reset, timed, car;

reg start_timer, major_green, minor_green;
reg state;
parameter G=0, R=1;

always @(posedge clock or negedge n_reset)
begin: SEQ
if (˜n_reset)

state <= G;
else

case (state)
G: if (car)

state <= R;

A.2 SystemVerilog and Verilog Differences 329

R: if (timed)
state <= G;

endcase
end

always @(timed or car or present_state)
begin: OP
start_timer = 1’b0;
minor_green = 1’b0;
major_green = 1’b0;
case (state)

G: begin
major_green = 1’b1;
if (car)

start_timer = 1’b1;
end

R: minor_green = 1’b1;
endcase
end

endmodule

This page intentionally left blank

Answers to Selected Exercises

Exercise 3.1

module Nand3 (output wire z, input wire w, x, y);

assign #5ps z = ˜(w & x & y);

endmodule

Exercise 3.3

module Full_Adder(output S, Co, input a, b, Ci);

wire na, nb, nc, d, e, f, g, h, i, j;

not n0 (na, a);
not n1 (nb, b);
not n2 (nc, Ci);
and a0 (d, na, nb, Ci);
and a1 (e, na, b, nc);
and a2 (f, a, b, Ci);
and a3 (g, a, nb, nc);
or o0 (S, d, e, f, g);
and a4 (h, b, Ci);
and a5 (i, a, b);
and a6 (j, a, Ci);
or o1 (Co, h, i, j);

endmodule

Exercise 3.4

module TestAdder;

wire a, b, Ci, S, Co;

FullAdder f0 (.*);
331

332 Answers to Selected Exercises

initial
begin
a = ’0; b = ’0; Ci = ’0;
#10ns a = ’1;
#10ns a = ’0; b = ’1;
#10ns a = ’1;
#10ns a = ’0; b = ’0; Ci= ’1;
#10ns a = ’1;
#10ns a = ’0; b = ’1;
#10ns a = ’1;
end

endmodule

Exercise 4.3
module Bool3to8(output logic [7:0] z,

input logic [2:0] a);

always_comb
begin
z[0] = ˜a[0] & ˜a[1] & ˜a[2];
z[1] = a[0] & ˜a[1] & ˜a[2];
z[2] = ˜a[0] & a[1] & ˜a[2];
z[3] = a[0] & a[1] & ˜a[2];
z[4] = ˜a[0] & ˜a[1] & a[2];
z[5] = a[0] & ˜a[1] & a[2];
z[6] = ˜a[0] & a[1] & a[2];
z[7] = a[0] & a[1] & a[2];
end

endmodule

module Cond3to8(output logic [7:0] z,
input logic [2:0] a);

always_comb
z = (a == 3’b000) ? 8’b00000001 :

(a == 3’b001) ? 8’b00000010 :
(a == 3’b010) ? 8’b00000100 :
(a == 3’b011) ? 8’b00001000 :
(a == 3’b100) ? 8’b00010000 :
(a == 3’b101) ? 8’b00100000 :
(a == 3’b110) ? 8’b01000000 :
(a == 3’b111) ? 8’b10000000 :
’x;

endmodule

Answers to Selected Exercises 333

module Shif3to8(output logic [7:0] z,
input logic [2:0] a);

always_comb
z = 1’b1 << a;

endmodule

module Test3to8;

logic [2:0] a;
logic [7:0] z0, z1, z2;

Bool3to8 d0 (z0, a);
Cond3to8 d1 (z1, a);
Shif3to8 d2 (z2, a);

initial
begin

a = 3’b000;
#10ns a = 3’b001;
#10ns a = 3’b010;
end

endmodule

Exercise 4.4

module Priority #(parameter N = 3)
(output logic [N-1:0] y,
output logic valid,
input logic [(1<<N)-1:0] a);

always_comb
begin
valid = ’0;
y = ’0;
for (int i = N-1; i >= 0; i--)
if (a[i])

begin
y = i;
valid = ’1;
end

end

endmodule

334 Answers to Selected Exercises

Exercise 4.6

module Comparator #(parameter N = 3)
(output logic [N-1:0] eq,
input logic [N-1:0] x, y);

logic eqi;

always_comb
begin
eqi = ’1;
for (int i = 0; i < N; i++)
eqi = ˜(x[i] ˆ y[i]) & eqi;

eq = eqi;
end

endmodule

Exercise 5.2

module dffrs (output logic q,
input logic d, clk, reset, n_set);

always_ff @(negedge clk, negedge n_set)
if (˜n_set)

q <= ’1;
else if (reset)

q <= ’0;
else

q <= d;

endmodule

Exercise 5.5

module counterud #(parameter N = 8)
(output logic [N-1:0] count,
input logic n_reset, clk, up);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

count <= 0;
else if (up && (count < ((1’b1<<N) - 1)))

count <= count + 1;
else if (!up && (count > 0))

count <= count - 1;

endmodule

Answers to Selected Exercises 335

Exercise 5.6
module piso #(parameter N = 8) (output logic q,

input logic [N-1:0] a, input logic clk, load);

logic [N-1:0] qr;

always_ff @(posedge clk)
if (load)

qr <= a;
else

qr <= {1’b0, qr[N-1:1]};

always_comb
q = qr[0];

endmodule

Exercise 5.11
module countlfsr (output logic [2:0] count,

input logic n_reset, clk);

always_ff @(posedge clk, negedge n_reset)
if (˜n_reset)

count <= ’1;
else

count <= {count[1:0], count[2] ˆ count[1]};

endmodule

Exercise 6.3
always_ff @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

present_state <= S0;
else

present_state <= next_state;
end

Exercise 6.5
module seqdet (output logic z,

input logic clock, n_reset, x);

enum {s0, s1, s2} state;

336 Answers to Selected Exercises

always_ff @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

state <= s0;
else

case (state)
s0: if (˜x)

state <= s0;
else

state <= s1;
s1: if (˜x)

state <= s0;
else

state <= s2;
s2: if (˜x)

state <= s0;
else

state <= s2;
endcase

end

always_comb
begin: COM
if (state == s2 && x)

z = ’1;
else

z = ’0;
end

endmodule

Exercise 6.8
module twoseq_1 (output logic z,

input logic clock, n_reset, a, b);

enum {s0, s1, s2} state;

always_ff @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

state <= s0;
else

case (state)
s0: if (a && b)

state <= s1;
else

Answers to Selected Exercises 337

state <= s0;
s1: if (a && !b)

state <= s2;
else

state <= s0;
s2: state <= s0;

endcase
end

always_comb
begin: COM
if (state == s2 && !a && !b)

z = ’1;
else

z = ’0;
end

endmodule

Exercise 6.9

module twoseq_2 (output logic z,
input logic clock, n_reset, a, b);

enum {s0, s1, s2} present_state, next_state;

always_ff @(posedge clock, negedge n_reset)
begin: SEQ
if (˜n_reset)

present_state <= S0;
else

present_state <= next_state;
end

always_comb
begin: COM

z = ’0;
case (state)

s0: if (a && b)
next_state <= s1;

else
next_state <= s0;

s1: if (a && !b)
next_state <= s2;

else
next_state <= s0;

338 Answers to Selected Exercises

s2: begin
if (!a && !b)

z = ’1;
next_state <= s0;
end

endcase
end

endmodule

Exercise 7.6
State s9 is modified to load the PC from the Addr part of the IR.

s9: begin
bus.Addr_bus = ’1;
bus.load_PC = ’1;
end

In fact, this could be done in the same clock cycle as s6; thus, the sequential
part is changed to:

s6: if (bus.op == LOAD)
state <= s7;

else if (bus.op == BNE)
state <= s0;

else
state <= s8;

and the combinational part becomes:

s6: begin
bus.CS = ’1;
bus.R_NW = ’1;
if ((bus.op == BNE) && (!bus.z_flag))

begin
bus.Addr_bus = ’1;
bus.load_PC = ’1;
end

end

Exercise 8.4
This is a liveness property.

The following is better because it tests the function and because it can be falsified
after a finite period of time.

assert property (@(posedge clk) load |=> ##N ready);

assert property (@(posedge clk) load |-> ready);

Answers to Selected Exercises 339

Exercise 9.4

always_ff @(posedge clock, negedge n_reset)
if (!n_reset)

state <= s0;
else

case (state)
s0: if (start)

state <= s1;
s1: if (timed)

state <= s0;
endcase

always_comb
if (state == s1)
enable = ’1;

else
enable = ’0;

always_ff @(posedge clock, negedge n_reset)
if (!n_reset)

count <= 0;
else

begin
if (enable)

count <= count + 1;
if (count == 255)

count <= 0;
end

always_comb
if (count == 255)

timed = ’1;
else

timed = ’0;

Exercise 10.4

module fsm (input logic clk, a, reset, output logic y);

typedef enum {s0, s1, s2} statetype;
statetype currentstate, nextstate;

always_ff @(posedge clock, posedge reset)
if (reset)

currentstate <= s0;

340 Answers to Selected Exercises

else
currentstate <= nextstate;

always_comb // or always @(*) or always @(currentstate or a)
begin
y = ’0;
case (currentstate)
s0: if (a)

nextstate = s1;
else

nextstate = s2;
s1: begin

y = ’1;
nextstate = s0;
end

s2: if (a)
nextstate = s2;

else
nextstate = s0;

endcase
end

endmodule

Exercise 11.3
Test for A/0: 0100/0, also covers E/1, G/1, H/0, I/0, J/1. Test for A/1: 1100/1,
also covers B/0, C/1, D/1, E/0, F/0, H/1, J/0. Test for G/0 implies G = 1, hence
B = C = 1. To propagate G to I implies F = 1, which implies C = D = 0. Hence,
there is a contradiction.

Exercise 11.7
11..11/0, 11..10/1, 11..01/1, .., 10..11/1, 01..11/1

Exercise 12.3
50 flip-flops implies 250 ≈ 1015 states. At 1MHz it would take 109 sec ≈ 36 years to
reach all states.

It takes 50 clock cycles to load the scan path (unloading can be done at the
same time as loading the next pattern). 200 patterns take 10,000 cycles = 10 ms at
1Mhz.

Answers to Selected Exercises 341

Exercise 12.7

State TMS TDI

Test-Logic-Reset 0 —
Run-Test/Idle 1 —
Select-DR-Scan 1 —
Select-IR-Scan 0 —
Capture-IR 0 —
Shift-IR 0 0
Shift-IR 1 1
Exit1-IR 1 —
Update-IR 1 —
Select-DR-Scan 0 —
Capture-DR 0 —
Shift-DR 0 0
Shift-DR 0 1
Shift-DR 0 0
Shift-DR 1 1
Exit1-DR 1 —
Update-DR 0 —
Run-Test/Idle

— means don’t care. Change of state occurs on
rising edge of TCK.

Exercise 12.11

module tap_controller (input logic tms, tck,
output logic ShiftIR, ClockIR, UpdateIR,
ShiftDR, ClockDR, UpdateDR);

enum {test_logic_reset, run_test_idle,
select_DR_scan, capture_DR, shift_DR, exit1_DR,
pause_DR, exit2_DR, update_DR,
select_IR_scan, capture_IR, shift_IR, exit1_IR,
pause_IR, exit2_IR, update_IR}
present_state, next_state;

always_ff @(posedge tck)
present_state <= next_state;

342 Answers to Selected Exercises

always_comb
begin: COM
ShiftIR = ’0;
ClockIR = ’0;
UpdateIR = ’0;
ShiftDR = ’0;
ClockDR = ’0;
UpdateDR = ’0;
case (present_state)
test_logic_reset:

begin
if (!tms)

next_state = run_test_idle;
else

next_state = test_logic_reset;
end

run_test_idle:
begin
if (tms)

next_state = select_DR_scan;
else

next_state = run_test_idle;
end

select_DR_scan:
begin
if (tms)

next_state = select_IR_scan;
else

next_state = capture_DR;
end

capture_DR:
begin
ClockDR = ’1;
if (tms)

next_state = exit1_DR;
else

next_state = shift_DR;
end

shift_DR:
begin
ClockDR = ’1;
ShiftDR = ’1;
if (tms)

next_state = exit1_DR;
else

next_state = shift_DR;

Answers to Selected Exercises 343

end
exit1_DR:

begin
if (tms)

next_state = update_DR;
else

next_state = pause_DR;
end

pause_DR:
begin
if (tms)

next_state = exit2_DR;
else

next_state = pause_DR;
end

exit2_DR:
begin
if (tms)

next_state = update_DR;
else

next_state = shift_DR;
end

update_DR:
begin
UpdateDR = ’1;
if (tms)

next_state = select_DR_scan;
else

next_state = run_test_idle;
end

select_IR_scan:
begin
if (tms)

next_state = test_logic_reset;
else

next_state = capture_IR;
end

capture_IR:
begin
ClockIR = ’1;
if (tms)

next_state = exit1_IR;
else

next_state = shift_IR;
end

shift_IR:

344 Answers to Selected Exercises

begin
ClockIR = ’1;
ShiftIR = ’1’;
if (tms)

next_state = exit1_IR;
else

next_state = shift_IR;
end

exit1_IR:
begin
if (tms)

next_state = update_IR;
else

next_state = pause_IR;
end

pause_IR:
begin
if (tms)

next_state = exit2_IR;
else

next_state = pause_IR;
end

exit2_IR:
begin
if (tms)

next_state = update_IR;
else

next_state = shift_IR;
end

update_IR:
begin
UpdateIR = ’1;
if (tms)

next_state = select_IR_scan;
else

next_state = run_test_idle;
end

endcase
end

endmodule

Exercise 13.6
States A, E, and F can be merged. States B and C can be merged. An extra state (T)
needs to be introduced to avoid races—let this be between D and AEF. A possible

Answers to Selected Exercises 345

state assignment is AEF (00), BC (01), D (11), T (10), giving next state and output
equations:

Y+
1 = Y1 · Y0 + P̄ · R · Y0

Y+
0 = P · R̄ + P̄ · R · Y0 + P̄ · Ȳ1 · Y0

Q = Y1

Exercise 13.7
There are three feedback loops in Figure 13.4. Insert a virtual buffer at A, (Y1),
between F and the NAND gate with output B (Y2), and at Q (Y3).

Y+
1 = D · R · Y2 + S̄ + Y1 · R · C

Y+
2 = Y1 · R + C̄ + Y2 · D · R

Y+
3 = Y3 · Y1 · R + Y3 · R · C̄ + Y3 · Y2 · D · R + Y1 · R · C + S̄

Exercise 14.1

‘include "disciplines.vams"
module inductor (node1, node2);
inout node1, node2;
electrical node1, node2;
parameter real L = 1;
branch (node1, node2) ind;

analog begin
V(ind) <+ L*ddt(I(ind));

end

endmodule

Exercise 14.3

‘include "disciplines.vams"

module vramp(a,b);
inout a,b;
electrical a,b;
branch(a,b) vr;
parameter real vl = 0;
parameter real vh = 1;
parameter real td = 1;
parameter real tr = 1;

346 Answers to Selected Exercises

analog begin
if ($abstime < td)

V(vr) <+ vl;
else if ($abstime < td + tr)
V(vr) <+ vl + ($abstime-td)*(vh - vl)/tr;

else
V(vr) <+ vh;

end
endmodule

Bibliography

[1] HP Boundary-Scan Tutorial and BSDL Reference Guide. Hewlett-Packard Company,
1990.

[2] Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification
Language. IEEE 1800–2005/IEC 62530:2007 (E), 2007.

[3] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital System Testing and Testable
Design (Revised Printing). IEEE Press, 1990.

[4] J. Bergeron. Writing Testbenches Using SystemVerilog. Springer-Verlag, New York, NY,
2006.

[5] S. Brown and Z. Vranesic. Fundamentals of Digital Logic with Verilog Design, 2nd ed.,
McGraw-Hill, New York, NY, 2007.

[6] G. de Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York,
NY, 1994.

[7] M.D. Edwards. Automatic Logic Synthesis Techniques for Digital Systems. MacMillan
Press, New York, NY, 1992.

[8] R.W. Hamming. Coding and Information Theory. Prentice-Hall, Englewood Cliffs, NJ,
1980.

[9] J.L. Hennessy and D.A. Patterson. Computer Architecture a Quantitative Approach.
Morgan Kaufman Publishers, San Mateo, CA, 1990.

[10] F.J. Hill and G.R. Peterson. Computer Aided Logical Design with Emphasis on VLSI,
4th ed., John Wiley & Sons, New York, NY, 1993.

[11] K. Kundert and O. Zinke. The Designer’s Guide to Verilog-AMS. Kluwer Academic
Publishers, Boston, MA, 2004.

[12] V. Litovski and M. Zwolinski. VLSI Circuit Simulation and Optimization. Chapman &
Hall, London, 1997.

[13] A.B. Maccabe. Computer Systems: Architecture, Organization and Programming.
Richard D. Irwin, Homewood, IL, 1993.

[14] C. Maunder. The Board Designer‚ Guide to Testable Logic Circuits. Addison-Wesley,
Reading, MA, 1992.

[15] A. Miczo. Digital Logic Testing and Simulation. John Wiley & Sons, New York, NY,
1987.

[16] Z. Navabi. VHDL Analysis and Modeling of Digital Systems. McGraw-Hill, New York,
NY, 1993.

347

348 Bibliography

[17] M.S. Nixon. Introductory Digital Design: A Programmable Approach. MacMillan Press,
New York, NY, 1995.

[18] S. Palnitkar. Verilog HDL: A Guide in Digital Design and Synthesis, 2nd ed., Prentice
Hall, Upper Saddle River, NJ, 2003.

[19] D.R. Smith and P.D. Franzon. Verilog Styles for Synthesis of Digital Systems. Prentice
Hall, Upper Saddle River, NJ, 2000.

[20] D.J. Smith. HDL Chip Design. Doone Publishing, Madison, AL, 1996.
[21] C. Spear. SystemVerilog for Verification: A Guide to Learning the Testbench Language

Features, 2nd ed., Springer-Verlag, New York, NY, 2008.
[22] S. Sutherland, S. Davidmann, and P. Flake. SystemVerilog for Design: A Guide to Using

SystemVerilog for Hardware Design and Modeling, 2nd ed., Springer-Verlag, New York,
NY, 2006.

[23] S.H. Unger. Hazards, critical races, and metastability. IEEE Transactions on Computers,
44(6):754–768, 1995.

[24] S. Vijayaraghavan and M. Ramanathan. A Practical Guide for SystemVerilog Assertions.
Springer-Verlag, New York, 2005.

[25] J.F. Wakerley. Digital Design Principles and Practices, 2nd ed., Prentice Hall, Englewood
Cliffs, NJ, 1994.

[26] N.H.E. Weste and K. Eshraghian. Principles of CMOS VLSI Design: A Systems Perspec-
tive, 2nd ed., Addison-Wesley, Reading, MA, 1992.

[27] M. Weyerer and G. Goldemund. Testability of Electronic Circuits. Carl Hanser Verlag,
1992.

[28] B.R. Wilkins. Testing Digital Circuits. Van Nostrand Reinhold, 1986.
[29] B. Wilkinson. Digital System Design, 2nd ed., Prentice Hall, Englewood Cliffs, NJ,

1992.
[30] W. Wolf. Modern VLSI Design A Systems Approach. Prentice Hall, Englewood Cliffs,

NJ, 1994.
[31] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press, New York,

NY, 1989.

Index

Symbols and Numbers
<= (non-blocking assignment). See NBAs

(nonblocking assignments) (<=)
@ (event control construct), 137–138
|=> (non-overlapping implication), in

assert statements, 180
= (blocking assignment). See Blocking

assignments (=)
2 to 1 multiplexer, 61–63
2 to 4 decoder, 63–65
4 to 1 multiplexer, 63
4 to 2 priority encoder, 68–69

A
ACC (accumulator) register, 152
Accellera Verilog-AMS standard, 326
Accumulator (ACC) register, 152
Accuracy, digital-to-analog converters,

306
Active events region, 190
Ad hoc guidelines, designing for testability,

252–253
ADCs (analog-to-digital converters),

307–310
Adders, 69–72

functional model for, 69–70
implementing as tasks, 71–72
ripple adder, 70–71

ALAP (as late as possible), 221–222
Algebra of two values. See Boolean algebra

Algorithmic state machine charts. See
ASM (algorithmic state machines)
charts

Algorithms, event-driven logic simulation,
185

Algorithms, fault-testing
D algorithm, 237–240
PODEM algorithm, 240–241
sensitive path algorithm, 235–237

Alphanumeric characters, 42
always blocks

blocking assignment and, 62
creating level-sensitive latches,

202–203
program block not containing, 173

always comb procedures, 172
always ff procedures, 172
Analog and mixed-signal. See Verilog-AMS

(analog and mixed-signal)
Analog, circuit design and, 1
Analog, interfacing with, 305–324

analog-to-digital converters, 307–310
digital-to-analog converters, 306–307
overview of, 305
phased-locked loops, 319–323
summary, further reading, and exercises,

323–324
Verilog-AMS contribution statements,

313–314
Verilog-AMS fundamentals, 310–313

349

350 Index

Analog, interfacing with (Continued)
Verilog-AMS mixed-signal modeling,

314–319
Verilog-AMS simulators, 323

analog procedural blocks, 313
Analog-to-digital converters, 307–310
Analog-to-digital converters (ADCs),

307–310
AND

basic testbench for AND gate, 168
Boolean operators, 26
product of sums form, 31
truth table for, 27

AND-OR-Invert structure, in CMOS
technology, 14–15

Antifuses, in PLAs, 233
Arguments, default style for passing,

163–164
As late as possible (ALAP), 221–222
As soon as possible (ASAP), 220–221
ASAP (as soon as possible), 220–221
ASCII code, 42
ASICs, implementing digital designs on, 7
ASM (algorithmic state machines) charts,

114–118
for asynchronous sequential design,

293–297
conditional output box, 117–118
for controllers, 225
datapath/controller partitioning, 149
decision box, 117
hardware implementation, 119–120
for linked state machine, 146
state assignment, 121–125
state box, 115–116
state machine diagram for, 115
state minimization, 125–129
traffic signal example, 114–116

Assembler instructions, in computer
programming, 150

assert statement, 137

Assertions, 178–182
benefits of, 181–182
checking if sequence of actions has been

performed, 180–181
immediate and concurrent, 179–180
overview of, 178

assign keyword, 48
Assignment

blocking (=), 62
continuous. See Continuous assignment
nonblocking (<=), 81
program block for grouping testbench

assignments, 172–174
single assignment form, 220
in state machines, 132

Associativity, rules of Boolean algebra, 28
Asynchronous circuits

designing, 285–293
formal analysis of, 283–285
informal analysis of, 281–282
overview of, 277–281

Asynchronous reset, 82–84, 132
Asynchronous sequential design

ASM charts for, 293–297
asynchronous circuits, 277–281
circuit design, 285–293
formal analysis of asynchronous circuits,

283–285
fundamental mode restriction and

synchronous circuits, 297
informal analysis of asynchronous

circuits, 281–282
metastability, 300–302
modeling setup and hold time violations,

298–300
overview of, 277
summary, further reading, and exercises,

302–304
Asynchronous sequential systems

avoiding when designing for testability,
252

Index 351

defined, 109
hazards and, 111

Asynchronous set, 82–84
Attributes, for expressing synthesis

constraints, 211
automatic

declaring tasks, 72
declaring programs, 173

Avalanche or hot electron injection
(EPROM), 17

B
Base 10 (decimal) numbers, 40
Base 16 (hexadecimal) numbers, 40
Base 8 (Octal) numbers, 40
Base classes, 175
Behavioral synthesis, 218–225
BILBO (built-in logic block observation),

261–264
cost and effectiveness of, 264
flip-flops in, 263
modes, 261
overview of, 261

Binary counters, 90–92
Binary-weighted ladder circuit, 306
Bipolar junction transistors (BJTs), 11
BIST (built-in self-test)

example, 257–261
overview of, 255–257

BIT (built-in test). See BIST (built-in
self-test)

BJTs (bipolar junction transistors), 11
Blocking assignments (=)

circuit synthesized by, 206
modeling combinatorial logic in, 172
multiplexers and, 62
in state machines, 132

Boole, George, 25
Boolean algebra

operators, 25–26
rules of, 28

Shannon’s expansion theorem, 29
summary and further reading and

exercises, 43–45
truth tables, 26–27
values, 25

Booth multiplier example, 181–182
Boundary scans (IEEE 1149.1), 264–272

architecture elements of, 266–268
example of typical boundary scan cell,

268–269
modes of operation of boundary scan

cells, 269
optional tests, 269–271
testing ICs with, 271–272

branch, 312
Built-in logic block observation. See BILBO

(built-in logic block observation)
Built-in self-test (BIST)

example, 257–261
overview of, 255–257

Built-in test (BIT). See BIST (built-in
self-test)

Bulk substrate, for MOS transistors, 12

C
CAD (computer-aided design), 2
Carriage returns, SystemVerilog syntax, 49
Case sensitivity, SystemVerilog syntax, 48
case statements

circuit synthesized from incomplete, 204
combinatorial logic and, 206–209
that allow don’t values, 66

casex statement, 66
casez statement, 66, 68
Ceilings, of functions, 66
Circuit under test (CUT), 170
Classes

in OOP, 174
in SystemVerilog, 175

CLBs (configurable logic blocks), 216
Clock enable signal, flip-flop with, 84–86

352 Index

Clocks
edge-triggered D flip-flop, 82
generating for microprocessor, 164
generating for testbenches, 169
generating with PLLs, 319
generation of, 102–104
for handling hazards in sequential

systems, 111
jitter, 298

clog2 function, 66
CMOS (complementary metal oxide

semiconductor)
AND-OR -Invert structure, 14–15
FETs (field effect transistors)

and, 11
logic gates, 8–10
NAND and NOR gates, 14
NMOS and PMOS transistors,

11–13
PLAs (programmable logic arrays), 10
three-state buffer, 14–15
transmission gate circuits, 16
voltage levels for CMOS circuits, 20

Code instructions, in computer
programming, 150–151

Combinational blocks
2 to 1 multiplexer, 61–63
2 to 4 decoder, 63–65
4 to 1 multiplexer, 63
adders, 69–72
overview of, 61
parameterizable decoders, 65–66
parity checkers, 72–73
priority encoders, 68–69
in process-based modeling of state

machines, 131
sever-segment decoders, 66–67
summary, further reading, and exercises,

76–77
testbenches for, 74–76
three-state buffers, 73–74

Combinatorial logic
modeling in blocking assignments, 172
RTL synthesis and, 206–210

Combinatorial logic design
implicants, 32
Karnaugh maps, 33–37
logic minimization techniques for, 32–33
minterms and maxterms, 31
overview of, 30

Combinatorial systems
designing for testability, 253–254
sequential systems compared with, 109

Comments, SystemVerilog syntax, 48–50
Commutativity, rules of Boolean

algebra, 28
Compiling simulation sequences, 195
Complementary metal oxide

semiconductor. See CMOS
(complementary metal oxide
semiconductor)

Complex PLDs. See CPLDs (complex
PLDs)

Complex sequential systems
code instructions, 150–151
datapath/controller partitioning,

147–149
linked state machines, 143–147
overview of, 143

Computer-aided design (CAD), 2
Concurrency, in HDL, 3
Concurrent fault simulation, 244–246
Configurable logic blocks (CLBs), 216
Constant functions, in SystemVerilog, 66
Constrained random stimulus generation,

174, 177–178
Constraints

attributes, 211
full case and parallel case

attributes, 214–215
including in SystemVerilog description,

201

Index 353

overview of, 210–211
resource constraints, 212–213
state encoding, 212
synthesizing models to meet, 201
timing constraints, 213–214

continuous, 311
Continuous assignment

assign keyword for, 48
delays associated with, 56
of high-impedance, 73
modeling delays in SystemVerilog, 194
operators, 52–53
overview of, 52

Contribution statements (<+)
for converting digital to analog, 316
defining network equations of analog

models, 313–314
<+ (contribution statements)

for converting digital to analog, 316
defining network equations of analog

models, 313–314
Controllability

designing for testability, 251
factors in testability, 235

Controllers
ASM chart for, 225
datapath/controller partitioning in state

machines, 147–149
for microprocessor, 158–161

Converters
analog-to-digital converters, 307–310
digital-to-analog converters, 306–307

Corner cases, determining what stimuli to
apply in testbenches, 174

Counters
binary counters, 90–92
Johnson counters, 92–94
linear feedback shift registers, 95–97
overview of, 90
program counter for microprocessor,

161–162

ripple counter, 92
three-bit counter example, 112–114
traffic signal controller with, 145

cover statement, 180
CPLDs (complex PLDs)

based on antifuse technology, 216
programmable logic and, 19
structure of, 10

CPUs. See Microprocessors
cross function, 315
CUT (circuit under test), 170

D
D algorithm, for testing faults, 237–240
D flip-flop, edge-triggered, 82
D latches, 279–281

formal analysis of, 283–285
informal analysis of, 281–282
sequential blocks and, 81
structural model of, 298

DA (design automation), 2
DACs (digital-to-analog converters),

306–307
Data storage, in SystemVerilog,

135–137
Data types, as non-synthesizable

SystemVerilog construct, 201
Datapath

components that store and manipulate
data, 143

instructions and, 150–151
partitioning controller and datapath,

147–149
side of microprocessor design, 161

ddt (time derivative) function, 314
Debuggers, 195
Decimal (base 10) numbers, 40
Decoders

2 to 4 decoder, 63–65
parameterizable, 65–66
sever-segment decoders, 66–67

354 Index

Default style for passing arguments,
163–164

Defects
vs. faults, 232
testing to detect, 231

Delays
modeling in SystemVerilog, 194
as non-synthesizable SystemVerilog

construct, 201
overview of, 53–56
specify blocks for representing,

226–227
timing control for, 137

Delta-sigma ADC, 309–310
Design automation (DA), 2
Design flow

digital design and, 6–8
in RTL synthesis, 7–8

Design, for testability, 251
boundary scan (IEEE 1149.1). See

Boundary scans (IEEE 1149.1)
built-in logic block observation,

261–264
built-in self-test, 255–257
enhancements, 252–253
example, 257–261
overview of, 251–252
structured design, 253–255
styles to avoid, 252
summary, further reading, and exercises,

272–275
Design under verification (DUV), 170
Deterministic signals (set/reset)

overview of, 104
writing testbenches and, 169

Digital design
circuit design and, 1
CMOS technology. See CMOS

(complementary metal oxide
semiconductor)

electrical properties, 20–22

Hardware Description Language. See
HDL (Hardware Description
Language)

overview of, 1–2
PLAs (programmable logic arrays), 10
programmable logic, 16–20
summary, 22

Digital systems, testing. See Testing digital
systems

Digital-to-analog converters (DACs),
306–307

Direct addressing, in computer
programming, 151

discipline, 311
$discontinuity, 317
discrete, 311
Discrete simulation, 316
$display

indicating form of circuit response, 178
monitoring responses in testbenches, 169

Distributivity, rules of Boolean algebra, 28
domain, 311
Don’t cares

case statements allowing, 66
combinational building blocks and, 68
priority encoders and, 68
treating unused combinations of states

as, 123
Dot notation, OOP features in

SystemVerilog, 175
Drain, in NMOS transistor voltage, 11
DRAM (dynamic RAM), 97
$dumpfile, 169–170
Dumping responses, in testbenches,

169–170
DUV (design under verification), 170
Dynamic RAM (DRAM), 97

E
e verification language, 5
ECL (emitter-collector logic), 11

Index 355

EDA (electronic design automation), 2
Edge-sensitive flip-flops, in RTL synthesis,

204–206
Edge-triggered D flip-flop

D latches forming, 298
overview of, 82
state registers for synchronous state

machines, 111
in three-bit counter, 112

EEPROM (Fowler-Nordheim tuning), 17
Elaboration sequence, of simulation, 195
Electrical properties

fan-out, 21–22
noise margins, 20–21

Electromagnetic interference (EMI),
232

Electronic design automation (EDA), 2
EMI (electromagnetic interference),

232
Emitter-collector logic (ECL), 11
endmodule, 51
enum, 129
Enumerated type, representing state in

SystemVerilog, 129
EPROM (avalanche or hot electron

injection), 17
EQUIVALENCE operator, Boolean

operators, 26
Error detection, parity bits for, 43
Espresso, 33
Essential hazard, 292
Essential prime implicants, in

combinatorial logic design, 32
Event control construct (@), 137–138
Event-driven simulation, 185–189
Event sequence, in simulation,

189–190
Exclusive OR (XOR) operator

in digital design, 26
reading from K-maps, 36
truth table for, 27

Execute phase, of microprocessor
execution cycle, 153

Expressions, Boolean
operators forming, 26
Shannon’s expansion theorem for

manipulating, 29
truth tables, 26–27

F
Fan-out

electrical properties, 21–22
synthesis tools recognizing fan-out limits,

218
Fault lists, 235
Fault models

overview of, 232–233
PLA faults, 233–234
single-stuck fault model, 233

Fault-oriented test pattern generation
D algorithm, 237–240
fault collapsing, 241–242
overview of, 234–235
PODEM algorithm, 240–241
sensitive path algorithm, 235–237
undetectable faults, 237

Fault simulation
concurrent fault simulation, 244–246
overview of, 242–243
parallel fault simulation, 243–244
verification and, 6

Faults
vs. defects, 232
fault collapsing, 241–242
probabilities, 233
undetectable, 237

Fetch phase, in microprocessor execution
cycle, 153

FETs (field effect transistors), 11
Field effect transistors (FETs), 11
File operations, as non-synthesizable

SystemVerilog construct, 201

356 Index

Files
accessing test vectors from text

files, 170
netlist files and timing files generated

following synthesis, 226
Fixed-point numbers, 41
Flash ADC, 308, 315
Flash devices, 17
Flip-flops

asynchronous set and reset, 82–84
in BILBO-oriented system, 263
D latches forming edge-triggered D

flip-flop, 298
edge-sensitive, 204–206
edge-triggered D flip-flop, 82
inferred in RTL synthesis, 202
JK and T flip-flops, 86–87
latches compared with, 79
reducing number of, 125
RTL synthesis rules and, 210
synchronous set/reset and clock enable

and, 84–86
Floating point numbers, 41
flow nature, 311
for loop, implementing parity checker with,

72
Four-bit adder, 69
Fowler-Nordheim tunneling (EEPROM),

17
FPGAs (field programmable gate areas)

compared with simulation, 167
implementing digital designs on, 7
overview of, 10
synthesis for, 216–218
synthesis tools for, 278
Xilinx, 17, 19

full case attributes, synthesis and,
214–215

Functional testing, 232
Fundamental mode restriction, 283, 297
Fuses/antifuses, in PLAs, 233

G
Gates. See also FPGAs (field programmable

gate areas)
AND gates, 168
fan-out, 21–22
logic gates, 8–10
low-level gate primitives, 50–51
NAND gates, 14
NOR gates, 14
NOT gates, 12
outputs declared before inputs, 48
pulses, 187–188
symbols for logic gates, 29–30
transmission gate circuits, 16

Gray codes, 42
GTKWave, 195–196

H
Hardware implementation, ASM charts,

119–120
Hazards

in asynchronous vs. synchronous state
machines, 111

circuit with essential hazard, 292
hazard-free circuit, 40
time diagram of circuit with static 1

hazard, 38
types of, 39

HDL (Hardware Description Language),
2–8

design automation with, 2
design flow, 6–8
OOP compared with, 174
reusability, 4–5
simulation, 3–4
synthesis, 4
SystemVerilog and, 2–3
verification, 5–6
Verilog and, 199
VHDL (Very High Speed Integrated

Circuit), 3

Index 357

Hexadecimal (base 16) numbers, 40
High impedance states, logic values in

SystemVerilog, 52
$hold, 300
Hold time, checking, 298–300

I
I/O, Boolean values, 25
ICs (integrated circuits)

designing, 283–285
designing asynchronous circuits, 277–281
designing high-performance, custom, 10
fault models and, 232
formal analysis of asynchronous circuits,

283–285
informal analysis of asynchronous

circuits, 281–282
logic gates, 8–10
synchronous circuits, 297
testing with boundary scan, 271–272

Identifiers, SystemVerilog, 48–50
idt (time integral) function, 314
IEEE (Institute of Electrical and

Electronics Engineers)
boundary scan standard. See Boundary

scans (IEEE 1149.1)
floating point numbers (754-1985), 41
logic gate symbols, 29–30
synthesis (1364.1-2002), 201
SystemVerilog vs. Verilog standards,

325–326
Verilog standards (1364 and 1800), 2–3

if statements, in combinatorial logic,
206–209

IIR (infinite impulse response) filter,
219–220

Immediate mode addressing, in computer
programming, 151

Implicants
in combinatorial logic design, 32
reading from K-maps, 34

IMPLIES operator, Boolean operators, 26
Inactive event region, SystemVerilog

simulation, 190
Inertial cancellation, SystemVerilog, 54
Inertial delay, SystemVerilog, 54
Infinite impulse response (IIR) filter,

219–220
Initial blocks, as non-synthesizable

SystemVerilog construct, 201
initial procedure, 168
Initialization, enhancements when

designing for testability, 252
input, 47
Inputs, testbenches and, 167
Insert buffers, synthesis tools recognizing,

218
Instantiation, of microprocessor,

162–163
Instruction register (IR), in microprocessor,

152
Instruction registers, boundary scans, 268
Instructions, in computer programming,

150–151
Integers, 40–41
Intersection rules, for D algorithm, 240
Inverter, timing diagram for, 37
IR (instruction register), in microprocessor,

152

J
Jitter, clock, 298
JK flip-flops, 86–87
Johnson counters, 92–94

K
Karnaugh maps (K-maps)

for 3-bit counter, 113
for don’t cares, 123
as logic minimization technique, 32–33
overview of, 33–37
for traffic signal controller, 120

358 Index

Keywords, in SystemVerilog
lower case syntax of, 48
module description with, 47

L
Latch up, 232
Latches

avoiding in state machines, 132
D latch, 81, 279–281
flip-flops compared with, 79
inferred in RTL synthesis, 202
level-sensitive latches, 202–204
RS latch, 281
RTL synthesis rules, 210
SR latch, 79–81

Latency, arithmetic operations and clock
cycles, 220

Level-sensitive latches, in RTL synthesis,
202–204

LFSR (linear feedback shift registers)
BILBO modes, 262
BIST (built-in self-test) and, 256
overview of, 95–97

Linked state machines, 143–147
Liveness property, 181
Logic gates. See also Gates

CMOS technology, 8–10
symbols for, 29–30

Logic values, SystemVerilog, 52

M
Machine code instructions, in computer

programming, 150
MAR (memory address register), 152
Maxterms, 31
MCMs (multi-chip modules), on PCBs

(printed circuit boards), 265
MDR (memory data register), 152
Mealy machines, 110
Mean time between failures (MTBF),

300–302

Memory
FPGAs (field programmable gate areas)

based on static RAM, 216
overview of, 97
ROM, 98
SRAM, 98–100

Memory address register (MAR), 152
Memory circuits, corruption of, 232
Memory data register (MDR), 152
Memory module, for microprocessor,

162–163
Metal oxide semiconductor FET

(MOSFET), 11
Metastable state, 283, 300–302
Methods, in OOP, 175
Microcode, 150
Microprocessors, 151–166

adding branch instructions to,
154–156

ASM charts for, 154–155
clock for, 164
components of, 152
controllers for, 158–161
control signals, 153
datapath/controller partitioning, 150
datapath for, 161
instantiation of, 162–163
interface for control signals, 157
memory module for, 162–163
overview of, 156
package definitions for modules,

156–157
program counter for, 161–162
sequencers for, 158–161

Minterms, 31
MISR (multiple input signature registers)

BILBO modes and, 262
BIST (built-in self-test) and, 257–261

Mixed-signal modeling. See also
Verilog-AMS (analog and
mixed-signal)

Index 359

mixing analog and digital in same model,
314–319

overview of, 310
Möbius counter. See Johnson counters
Model-checking techniques, for synthesis

verification, 225–226
modport, 157–158
Modular structure, of testbenches, 171
module

assertions included in modules not
programs, 182

declaring clock generator, 173–174
module description in SystemVerilog,

47–48
$monitor

indicating form of circuit response, 178
monitoring responses in testbenches, 169
postponed events in simulation, 189

Monostables, avoiding when designing for
testability, 252

Moore machines, 110
MOSFET (metal oxide semiconductor

FET), 11
MTBF (mean time between failures),

300–302
Multi-chip modules (MCMs), on PCBs

(printed circuit boards), 265
Multi-valued logic, 73
Multiple bit registers, 88
Multiple input signature registers (MISR)

BILBO modes, 262
BIST (built-in self-test) and, 257–261

Multiplexers
2 to 1 multiplexer, 61–63
4 to 1 multiplexer, 63
sharing resources via, 223

Multipliers, sequential, 100–102

N
n-type MOS (NMOS), 11–13
NAND gates

CMOS, 14
de Morgan’s Law, 28–29
operators used in digital design, 26
truth table for, 27

nature, 310–312
NBAs (nonblocking assignments) (<=)

circuit synthesized by, 205–206
D flip-flop and, 82
D latches and, 81
modeling sequential logic in, 172
race conditions and, 192–193
reading from K-maps, 36
regions in SystemVerilog simulation, 190
in state machines, 132

Negative numbers, sign bits for, 40
negedge statements, for edge-sensitive

flip-flops, 204–206
Netlists

generating following synthesis, 226
overview of, 51

Nets, 51
Network equations, of analog models,

313–314
NMOS (n-type MOS), 11–13
Noise margins, electrical properties,

20–21
Non-overlapping implication (|=>), in

assert statements, 180
Nondeterminism, in SystemVerilog, 191
NOR gates

CMOS, 14
de Morgan’s Law, 28–29
operators used in digital design, 26
truth table for, 27

NOT gates
Boolean operators, 26
in digital circuits, 12

NP-complete, logic minimization and, 33
Number codes

alphanumeric characters, 42
fixed point numbers, 41

360 Index

Number codes (Continued)
floating point numbers, 41
Gray codes, 42
integers, 40–41
overview of, 40
parity bits, 43

O
Object-oriented programming (OOP),

174–175
Objects, in OOP, 174
Observability

designing for testability, 251
factors in testability, 235

Observe event regions, in SystemVerilog
simulation, 190

Octal (base 8) numbers, 40
ON/OFF, Boolean values, 25
One-hot encoding, 122
OOP (object-oriented programming),

174–175
OP block, for setting output in

SystemVerilog, 129–130
Operators

overview of, 25–26
SystemVerilog, 52–53
truth tables, 26–27

OR
Boolean operators, 26
sum of products form, 31
truth table for, 27

output, 47
Output table, in ASM charts,

119–120
Outputs

comparing Moore and Mealy machines,
110

setting with OP block, 129–130
testbenches and, 167

Overlapping implication |->, in assert
statements, 180

P
p-type MOS (PMOS), 11–13
PAL (programmable array logic), 10,

17–19
Parallel fault simulation, 243–244
parallel case attributes, in synthesis,

214–215
Parameterizable decoders, 65–66
Parameters, SystemVerilog, 56
Parity bits, for error detection, 43
Parity checkers, 72–73
Parity detectors, 132–133
Partitioning datapath/controller, in state

machines, 143, 147–149
PC (program counter), in microprocessor,

152
PCBs (printed circuit boards)

boundary scan tests, 265
probe testing, 264

Phased-locked loops (PLLs), 319–323
PLAs (programmable logic arrays)

fuses/antifuses in, 233
PLA fault model, 233–234
structure of, 10

PLDs (programmable logic devices), 10
PLLs (phased-locked loops), 319–323
PMOS (p-type MOS), 11–13
PODEM algorithm, for testing faults,

240–241
posedge statements, 204–206
Postponed event regions, in SystemVerilog

simulation, 189
potential nature, 311
Preponed event regions, in SystemVerilog

simulation, 190
Prime implicants

in combinatorial logic design, 32
reading from K-maps, 36

Primitive flow table, 286–287
Principle of duality, 28
Printed circuit boards (PCBs)

Index 361

boundary scan tests, 265
probe testing, 264

Priority encoders, 68–69
Probe testing, 264
Procedural blocks, state machines

OP block for setting output,
129–130

SEQ block for modeling state machine,
129

Procedural statements, for converting
analog to digital, 316

Product of sums, logical AND, 31
program

assertions included in modules not
programs, 182

for grouping testbench assignments,
172–174

reactive events in simulation, 189
Program counter (PC), in microprocessor,

152
Programmable array logic (PAL),

10, 17–19
Programmable logic

advantages of, 16–17
CPLD structure, 19
PALs and FPGAs and, 17–19
reconfigurable logic, 17
types of integrated circuits, 10

Programmable logic arrays. See PLAs
(programmable logic arrays)

Programmable logic devices (PLDs), 10
PRSG (pseudo-random sequence

generator). See LFSR (linear feedback
shift registers)

Pulses, gate
cancelation, 188
zero-width, 187

Q
Quine-McCluskey, as logic minimization

technique, 32–33

R
R-2R ladder, as digital-to-analog converter,

307
Races

in SystemVerilog simulation, 192–193
transition table showing critical race, 289

RAM (random access memory)
FPGAs (field programmable gate areas)

based on static RAM, 216
overview of, 97
SRAM, 98–99
synchronous RAM, 99–100

rand, 176
randc, 176
Random access memory. See RAM (random

access memory)
Randomization

constrained random stimulus generation,
174

testbenches and, 176–178
Reactive event regions, in SystemVerilog

simulation, 189
Read-only memory (ROM), 98
Reconfigurable logic, 17
Redundant logic, avoiding, 252
Reduction operator, 73
Regions

relationship between, 190
in SystemVerilog simulation, 189

Register transfer operation, in
datapath/controller partitioning, 148

Registers
boundary scan registers, 267–268
datapath, 148
linear feedback shift registers, 95–97
in microprocessor, 152
multiple bit registers, 88
process for modeling in state machines,

130
shift registers, 88–90
state machines, 110–112

362 Index

Reset
deterministic signals for testbenches, 169
synchronous vs. asynchronous, 216

Resolution, digital-to-analog converters,
306

Resource constraints, in synthesis, 212–213
Reusability, digital design and, 4–5
Ripple adder, 70–71
Ripple counter, 92
ROM (read-only memory), 98
RS latch, 281
RTL (register transfer level)

behavioral synthesis compared to,
218–219

checking RTL code against assertions,
182

combinational logic, 206–210
edge-sensitive flip-flops, 204–206
inferred flip-flops and latches, 202
level-sensitive latches, 202–204
overview of, 200–201
simulation modeling constructs and, 194
standard for, 326
summary of RTL synthesis rules, 210
synthesis design flow, 7–8
synthesis tools, 4
SystemC and, 174
SystemVerilog constructs ignored or

rejected by RTL synthesis tools, 201
Rules, Boolean algebra, 28

S
Scan-in, scan-out (SISO) principle, in

testing, 253–255
Scan mode, BILBO, 262
Scheduling

ALAP (as late as possible), 221–222
ASAP (as soon as possible), 220–221

Schematic capture, 2
Selective trace algorithm

single-pass event scheduler, 187–189

SystemVerilog simulation based
on, 189

Sensitive path algorithm, for testing faults,
235–237

SEQ block, 129
Sequence detector

ASM chart for, 122
state and output table for, 123

Sequencers, 152–153, 158–161
Sequential blocks

asynchronous set/reset, 82–84
binary counters, 90–92
checking responses, 104–106
clock generation, 102–104
D latch, 81
deterministic signals (set/reset), 104
edge-triggered D flip-flop, 82
JK and T flip-flops, 86–87
Johnson counters, 92–94
linear feedback shift registers, 95–97
memory, 97
multiple bit registers, 88
overview of, 79
ROM, 98
sequential multiplier, 100–102
shift registers, 88–90
SR latch, 79–81
SRAM, 98–100
summary, further reading, and exercises,

106–107
synchronous set/reset and clock enable,

84–86
testbenches for, 102

Sequential logic
combinatorial logic compared with, 30
modeling in nonblocking assignments,

172
Sequential multiplier, 100–102
Sequential systems

combinatorial systems compared with,
109

Index 363

complex. See Complex sequential systems
designing for testability, 253
general sequential system, 110
synchronous. See Synchronous sequential

systems
Serial-in, parallel-out (SIPO) registers, 88
Set/reset

asynchronous, 82–84
deterministic signals, 104
synchronous, 84–86
synchronous vs. asynchronous, 216

Setup, modeling violations, 298–300
Sever-segment decoders, 66–67
Shannon’s expansion theorem, 29
Sharing resources, via multiplexers, 223
Shift registers

linear feedback shift registers, 95–97
overview of, 88–90

Simulation
of asynchronous circuit, 290
comparing testbenches and FPFAs, 167
delay models, 194
EDA tools performing, 2
event-driven, 185–189
event sequence in, 189–190
fault simulation, 6
model checking tools as alternative

to, 182
overview of, 185
races, 192–193
regions, 189
simulation cycle, 191–192
simulator tools, 195–196
stratified event queue showing

relationship between regions, 190
summary, further reading, and exercises,

196–198
verifying state minimization, 295–296
Verilog and VHDL simulators, 3–4

Simulators
tool options, 195–196

uses of, 185
Verilog-AMS, 323

Single assignment form, 220
Single-input signature register (SISR),

256–261
Single precision floating point

numbers, 41
Single-stuck fault model (SSFM), 233
SIPO (serial-in, parallel-out) registers, 88
SISO (scan-in, scan-out) principle, in

testing, 253–255
SISR (single-input signature register),

256–261
Source, in NMOS transistor voltage, 11
Spaces, in SystemVerilog syntax,

48–50
specify blocks, 226–227
Speed, digital-to-analog converters

and, 306
SPICE simulator, 323
SR latch, 79–81
SRAM (static RAM)

asynchronous, 152
defined, 97
FPGAs based on, 216
overview of, 98–100

SSFM (single-stuck fault model), 233
STA (static timing analysis), 227
State

compatibility of, 287
in digital design, 109

State and output table
asynchronous sequential systems and,

287
as equivalent of ASM chart, 119
for vending machine example, 127

State assignment, ASM charts
guidelines for multiple state models,

121–125
in simple two state model, 119

State encoding, 212

364 Index

State machines
enumerated type representing state, 129
hazards in sequential systems, 111
linked state machines, 143–147
Moore and Mealy machines, 110
OP block for setting output, 129
parity detector example, 132–133
partitioning, 143
SEQ block for modeling state machine,

129
storing data, 135–137
testbenches for, 137–138
three process model, 132
two process model, 130–131
vending machine example, 133–135

State minimization, ASM charts, 125–129
benefits of, 125
with essential hazard, 295
vending machine example, 126–129

State registers, 110–112
State tables

for D latch, 284
transitions, 285
for vending machine example,

127–128
State transition diagram, 286–287, 291
State variables, 283, 284
Static faults, 233
Static hazards, 39
Static RAM. See SRAM (static RAM)
Static timing analysis (STA), 227
Stimuli, determining what stimuli to apply

in testbenches, 174
Storing data, in SystemVerilog, 135–137
Stratified event queue

dividing event list into regions, 189
showing relationship between regions,

190
$strobe

monitoring responses in testbenches, 169
postponed events in simulation, 189

Structural testing
approaches to testing, 232
designing for testability, 253–255

Structure representation, in HDL, 3
Structured design techniques, for

asynchronous sequential systems, 278
Sum of products, logical OR, 31
Symbols, for logic gates, 29–30
Synchronous circuits, 297
Synchronous RAM, 99–100
Synchronous sequential systems

ASM charts for, 114–118
vs. asynchronous sequential systems,

277–278
designing for testability, 253
Moore and Mealy machines, 110
overview of, 109–110
state registers, 110–112
summary, further reading, and exercises,

138–141
synthesis from ASM charts. See ASM

(algorithmic state machines) charts
in SystemVerilog. See State machines
three-bit counter example, 112–114

Synchronous set/reset, 84–86, 216
Synthesis

from ASM charts, 119
attributes, 211
behavioral synthesis, 218–225
constraints, 210–211
EDA tools performing, 2
FPGAs (field programmable gate areas),

216–218
full case and parallel case

attributes, 214–215
HDL and, 4
overview of, 199–200
resource constraints, 212–213
RTL synthesis. See RTL (register transfer

level)
state encoding, 212

Index 365

summary, further reading, and exercises,
228–230

timing constraints, 213–214
timing simulation, 226–227
verification, 225–226

Synthesizable models, distinguishing
testbenches from, 167–168

SystemC
overview of, 3
RTL and, 174
Verilog-AMS simulators, 323

SystemVerilog
classes in, 175
constructs ignored or rejected by RTL

synthesis tools, 201
differences from Verilog 1995, 2005,

328–329
OOP features in, 175
overview of, 2–3
simulation. See Simulation
state machines. See State machines
synthesis. See Synthesis
verification features, 5–6

SystemVerilog modeling
continuous assignments, 52
delays, 53–56
gate models, 50–51
identifiers, spaces, and comments,

48–50
logic values, 52
modules, 47–48
netlists, 51
operators, 52–53
parameters, 56
summary, further reading, and exercises,

58–59
testbenches, 56–57

T
T flip-flops, 86–87
TAP controller, 267

TAP (test access port), 266–267
tasks, 71–72
Test access port (TAP), 266–267
Test data registers, 267
Test pattern generation. See Fault-oriented

test pattern generation
Test vectors, accessing from text file, 170
Testability

controllability and observability factors
in, 234–235

designing for. See Design, for testability
Testbenches

assertion-based verification, 178–182
clock generation, 169
for combinational building blocks,

74–76
constrained random stimulus generation,

174
deterministic signals, 169
dumping responses, 169–170
monitoring responses, 169
OOP (object-oriented programming),

174–175
overview of, 167–168
program block for grouping testbench

assignments, 172–174
randomization, 176–178
structure of testbenches, 170–172
summary, further reading, and exercises,

182–184
SystemVerilog, 56–57
for SystemVerilog state machines,

137–138
test vectors accessed from text file, 170
for verification, 5–6

Testbenches, for sequential blocks
checking responses, 104–106
clock generation, 102–104
deterministic signals (set/reset), 104
overview of, 102

Testcases, 171

366 Index

Testing digital systems
concurrent fault simulation, 244–246
D algorithm, 237–240
fault collapsing, 241–242
fault models, 232–233
fault-oriented test pattern generation,

234–235
fault simulation, 242–243
need for, 231–232
overview of, 231
parallel fault simulation, 243–244
PLA faults, 233–234
PODEM algorithm, 240–241
sensitive path algorithm, 235–237
single-stuck fault model, 233
summary, further reading, and exercises,

246–249
undetectable faults, 237

Text file, accessing test vectors from, 170
Three-bit counter, 112–114
Three-process model, SystemVerilog, 132
Three-state buffers

CMOS technology, 14–15
SystemVerilog model of, 73–74

Threshold voltage, NMOS
transistors, 11

Time representation, in HDL, 3
timeprecision, 299
timeunit, 299
Timing constraints, synthesis, 213–214
Timing controls

delay and event, 137
in event-driven simulation, 186
synthesis and, 201

Timing diagrams, 37–40
Timing files, 226
Timing simulation, 226–227
Tracking ADC, 308–309
transition function, 316–317
Transistor-transistor logic (TTL), 11
Transistors, types of, 11

Transition table
in ASM charts, 119–120
with critical race, 289
with a cycle, 290
with essential hazard, 292
implied by don’t cares, 124
for state variables, 284

Transmission gate circuits, CMOS
technology, 16

True/False, Boolean values, 25
Truth tables

for 2 to 4 decoder, 64
basic relationships, 28
Boolean operators and expressions, 26–27
counters, 112
D algorithm, 239
JK and T flip-flops, 86
RS latch, 281

TTL (transistor-transistor logic), 11
Two-process model, SystemVerilog,

130–131
Two’s complement, in notation of signed

integers, 41

U
Uniqueness, 68
Universal shift register, 89

V
Vacuous pass, assertions and, 180
Values, Boolean algebra, 25
VCO (voltage controlled oscillator),

319–320
Vending machine example, state machines

in SystemVerilog, 133–135
Vera language, 5
Verification

assertion-based, 178–182
contrasted to testing, 231
digital design and, 5–6
synthesis and, 225–226

Index 367

Verification languages, 5
Verilog

standards, 325
Verilog-A, 3

Verilog-AMS (analog and
mixed-signal), 3

contribution statements, 313–314
fundamentals, 310–313
mixed-signal modeling, 314–319
overview of, 305, 310
simulators, 323

Very large scale integration (VLSI) circuits,
255

VHDL-AMS simulator, 323
VHDL (Very High Speed Integrated

Circuit)
ease of learning, 4
overview of, 3
Verilog-AMS simulators, 323

Virtual buffers, D latch with, 283
VLSI (very large scale integration) circuits,

255
Voltage controlled oscillator (VCO),

319–320

W
White space, in SystemVerilog syntax, 49
Wild cards (.*), using with adder, 75
wire, 51
$write, 169

X
Xilinx, 17, 19
XNOR operator, 26
XOR (exclusive OR) operator

in digital design, 26
reading from K-maps, 36
truth table for, 27

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Your purchase of Digital System Design with SystemVerilog includes access to a free
online edition for 45 days through the Safari Books Online subscription service. Nearly
every Prentice Hall book is available online through Safari Books Online, along with
more than 5,000 other technical books and videos from publishers such as Addison-
Wesley Professional, Cisco Press, Exam Cram, IBM Press, O’Reilly, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: RFKPHAA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Cover

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	About the Author
	1. Introduction
	1.1 Modern Digital Design
	1.2 Designing with Hardware Description Languages
	1.2.1 Design Automation
	1.2.2 What is SystemVerilog?
	1.2.3 What is VHDL?
	1.2.4 Simulation
	1.2.5 Synthesis
	1.2.6 Reusability
	1.2.7 Verification
	1.2.8 Design Flow

	1.3 CMOS Technology
	1.3.1 Logic Gates
	1.3.2 ASICs and FPGAs

	1.4 Programmable Logic
	1.5 Electrical Properties
	1.5.1 Noise Margins
	1.5.2 Fan-Out

	Summary
	Further Reading
	Exercises

	2. Combinational Logic Design
	2.1 Boolean Algebra
	2.1.1 Values
	2.1.2 Operators
	2.1.3 Truth Tables
	2.1.4 Rules of Boolean Algebra
	2.1.5 De Morgan’s Law
	2.1.6 Shannon’s Expansion Theorem

	2.2 Logic Gates
	2.3 Combinational Logic Design
	2.3.1 Logic Minimization
	2.3.2 Karnaugh Maps

	2.4 Timing
	2.5 Number Codes
	2.5.1 Integers
	2.5.2 Fixed Point Numbers
	2.5.3 Floating Point Numbers
	2.5.4 Alphanumeric Characters
	2.5.5 Gray Codes
	2.5.6 Parity Bits

	Summary
	Further Reading
	Exercises

	3. Combinational Logic Using SystemVerilog Gate Models
	3.1 Modules and Files
	3.2 Identifiers, Spaces, and Comments
	3.3 Basic Gate Models
	3.4 A Simple Netlist
	3.5 Logic Values
	3.6 Continuous Assignments
	3.6.1 SystemVerilog Operators

	3.7 Delays
	3.8 Parameters
	3.9 Testbenches
	Summary
	Further Reading
	Exercises

	4. Combinational Building Blocks
	4.1 Multiplexers
	4.1.1 2 to 1 Multiplexer
	4.1.2 4 to 1 Multiplexer

	4.2 Decoders
	4.2.1 2 to 4 Decoder
	4.2.2 Parameterizable Decoder
	4.2.3 Seven-Segment Decoder

	4.3 Priority Encoder
	4.3.1 Don’t Cares and Uniqueness

	4.4 Adders
	4.4.1 Functional Model
	4.4.2 Ripple Adder
	4.4.3 Tasks

	4.5 Parity Checker
	4.6 Three-State Buffers
	4.6.1 Multi-Valued Logic

	4.7 Testbenches for Combinational Blocks
	Summary
	Further Reading
	Exercises

	5. SystemVerilog Models of Sequential Logic Blocks
	5.1 Latches
	5.1.1 SR Latch
	5.1.2 D Latch

	5.2 Flip-Flops
	5.2.1 Edge-Triggered D Flip-Flop
	5.2.2 Asynchronous Set and Reset
	5.2.3 Synchronous Set and Reset and Clock Enable

	5.3 JK and T Flip-Flops
	5.4 Registers and Shift Registers
	5.4.1 Multiple Bit Register
	5.4.2 Shift Registers

	5.5 Counters
	5.5.1 Binary Counter
	5.5.2 Johnson Counter
	5.5.3 Linear Feedback Shift Register

	5.6 Memory
	5.6.1 ROM
	5.6.2 SRAM
	5.6.3 Synchronous RAM

	5.7 Sequential Multiplier
	5.8 Testbenches for Sequential Building Blocks
	5.8.1 Clock Generation
	5.8.2 Reset and Other Deterministic Signals
	5.8.3 Checking Responses

	Summary
	Further Reading
	Exercises

	6. Synchronous Sequential Design
	6.1 Synchronous Sequential Systems
	6.2 Models of Synchronous Sequential Systems
	6.2.1 Moore and Mealy Machines
	6.2.2 State Registers
	6.2.3 Design of a Three-Bit Counter

	6.3 Algorithmic State Machines
	6.4 Synthesis from ASM Charts
	6.4.1 Hardware Implementation
	6.4.2 State Assignment
	6.4.3 State Minimization

	6.5 State Machines in SystemVerilog
	6.5.1 A First Example
	6.5.2 A Sequential Parity Detector
	6.5.3 Vending Machine
	6.5.4 Storing Data

	6.6 Testbenches for State Machines
	Summary
	Further Reading
	Exercises

	7. Complex Sequential Systems
	7.1 Linked State Machines
	7.2 Datapath/Controller Partitioning
	7.3 Instructions
	7.4 A Simple Microprocessor
	7.5 SystemVerilog Model of a Simple Microprocessor
	Summary
	Further Reading
	Exercises

	8. Writing Testbenches
	8.1 Basic Testbenches
	8.1.1 Clock Generation
	8.1.2 Reset and Other Deterministic Signals
	8.1.3 Monitoring Responses
	8.1.4 Dumping Responses
	8.1.5 Test Vectors from a File

	8.2 Testbench Structure
	8.2.1 Programs

	8.3 Constrained Random Stimulus Generation
	8.3.1 Object-Oriented Programming
	8.3.2 Randomization

	8.4 Assertion-Based Verification
	Summary
	Further Reading
	Exercises

	9. SystemVerilog Simulation
	9.1 Event-Driven Simulation
	9.2 SystemVerilog Simulation
	9.3 Races
	9.3.1 Avoiding Races

	9.4 Delay Models
	9.5 Simulator Tools
	Summary
	Further Reading
	Exercises

	10. SystemVerilog Synthesis
	10.1 RTL Synthesis
	10.1.1 Non-Synthesizable SystemVerilog
	10.1.2 Inferred Flip-Flops and Latches
	10.1.3 Combinational Logic
	10.1.4 Summary of RTL Synthesis Rules

	10.2 Constraints
	10.2.1 Attributes
	10.2.2 Area and Structural Constraints
	10.2.3 full_case and parallel_case Attributes

	10.3 Synthesis for FPGAs
	10.4 Behavioral Synthesis
	10.5 Verifying Synthesis Results
	10.5.1 Timing Simulation

	Summary
	Further Reading
	Exercises

	11. Testing Digital Systems
	11.1 The Need for Testing
	11.2 Fault Models
	11.2.1 Single-Stuck Fault Model
	11.2.2 PLA Faults

	11.3 Fault-Oriented Test Pattern Generation
	11.3.1 Sensitive Path Algorithm
	11.3.2 Undetectable Faults
	11.3.3 The D Algorithm
	11.3.4 PODEM
	11.3.5 Fault Collapsing

	11.4 Fault Simulation
	11.4.1 Parallel Fault Simulation
	11.4.2 Concurrent Fault Simulation

	Summary
	Further Reading
	Exercises

	12. Design for Testability
	12.1 Ad hoc Testability Improvements
	12.2 Structured Design for Test
	12.3 Built-In Self-Test
	12.3.1 Example
	12.3.2 Built-In Logic Block Observation (BILBO)

	12.4 Boundary Scan (IEEE 1149.1)
	Summary
	Further Reading
	Exercises

	13. Asynchronous Sequential Design
	13.1 Asynchronous Circuits
	13.2 Analysis of Asynchronous Circuits
	13.2.1 Informal Analysis
	13.2.2 Formal Analysis

	13.3 Design of Asynchronous Circuits
	13.4 Asynchronous State Machines
	13.5 Setup and Hold Times and Metastability
	13.5.1 The Fundamental Mode Restriction and Synchronous Circuits
	13.5.2 SystemVerilog Modeling of Setup and Hold Time Violations
	13.5.3 Metastability

	Summary
	Further Reading
	Exercises

	14. Interfacing with the Analog World
	14.1 Digital-to-Analog Converters
	14.2 Analog-to-Digital Converters
	14.3 Verilog-AMS
	14.3.1 Verilog-AMS Fundamentals
	14.3.2 Contribution Statements
	14.3.3 Mixed-Signal Modeling

	14.4 Phased-Locked Loops
	14.5 Verilog-AMS Simulators
	Summary
	Further Reading
	Exercises

	A. SystemVerilog and Verilog
	A.1 Standards
	A.2 SystemVerilog and Verilog Differences

	Answers to Selected Exercises
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

