Some more interview questions:

EIHRIEBsequence detector, edge detector, moore/mealy machine, frequency
divider, round robin arbiter, setup/hold<%:

ROEEHERE, AREEAREIRERIAE

AZxfEfHassertion>kcheckiEEreq, ack{FSEIA]

func coverageflBEABTENXbin, ignore bin, cross coverage, transition
coverage X TIISHIE T

1. swap 2 variable without using temp (this is asked several times)

int a = 5;

int b = 10;

a=a”b; //aisa”~b, bisb

b=a~b; //aisa~"b, bisb~"(a”*“b)=a~(b""b)=a"0-=a

a=a”"b;, //ais(a”~"b)a=(a”a)~"b=©0"b=0>b, bisa
already

why use xor because using add will overflow (a =a + b; b =a - b; a =a
b; will overflow for a+b)

2. reverse single linked list(iterative/recursively) leetcode problem
3. fibnacci series (iterative/recursive), some phone interview
4. determine if an integer is palindrome ("12321") , leetcode problem

5. reverse all bits of number in binary(©bl111001 -> 0b100111), use bit
manipulation, leetcode problem

6. find if a linked list has loop, leetcode problem

7. how do you write a fix priority arbiter? (I think most people can not
find a good solution online, the following code comes from cornell course
ECE5745)

module fixed arbiter #(parameter NUM_REQS=4)
(

input [NUM_REQS-1:0] req;

output[NUM _REQS-1:0] grants;
)s

wire[NUM_REQS:0] kills;

assign kills[@] = 1'be;

wire[NUM_REQS-1] grants_int;

genvar i ;
generate
for (i = @; i < NUM _REQS; i++) begin: per_req logic
assign grants_int[i] = !'kills[i] & reqgs[i];
assign kills[i+1] = kills[i] | grants_int[i];
end
endgenerate

assign grants = grants_int;
endmodule

8. how to write a round robin arbiter? (If you can understand item 7 how
kill chain works, then it is easy to understand following code, you first
need to have a variable priority arbiter, which takes an input of priority,
then you can build the round robin arbiter with a shift register and the
variable priority arbiter)

module variable_priority_arbiter#(parameter NUM_REQS=4)

(
input [NUM_REQS-1:0] priority, // one hot input of variable
priority
input [NUM_REQS-1:0] regs,
output [NUM_REQS-1:0] grants
)
/*
suppose the input priority is 00100
priority int will be 00000 00100
imagine the reqs_int 1is 01000 01000 //case 1
imagine the reqs_int 1is 00100 00100 //case 2
imagine the reqs_int 1is 00010 00010 //case 3
*/

wire [2*NUM_REQS:0] kills;

wire [2*NUM_REQS-1:0] priority int = { {NUM _REQS{1'b@}}, priority
}; //extend priority

wire [2*NUM_REQS-1:0] regs_int = {reqs,reqs}; //copy regs

wire [2*NUM_REQS-1:0] grants_int;

assign kills[@] = 1'b0;

genvar 1i;
generate
for (i = @; i < 2*NUM_REQS; i=i+1) begin: per_req_logic
assign grants_int[i] = priority_int[i] ? reqs_int[i]:
('kills[i] & regs_int[i]);
assign kills[i+1] = priority_int[i]? grants_int[i]
(kills[i] | grants_int[i]);
end
endgenerate

assign grants = (grants_int[NUM_REQS-1:0] | grants_int[2*NUM_REQS-
1:NUM_REQS];
endmodule

module round robin_arbiter#(parameter NUM_REQS=4, paramater
RESET_PRIORITY = 1)

(
input clk,
input rst,
input [NUM_REQS-1:0] regs,
output [NUM_REQS-1:0] grants
)

wire priority_en = |grants;

wire [NUM_REQS-1:0] priority next;

assign priority next = {grants[NUM_REQS-2:0],grants[NUM_REQS-1]};
wire [NUM_REQS-1:0] priority_;

// a reset_req with reset value as RESET_PRIORITY
reset_reg#(NUM_REQS,RESET_PRIORITY) priority_req

(

.q(priority)
)5

.clk(clk), .reset(reset), .en(priority en), .d(priority next),

//instantiate variable arbiter
variable priority arbiter#(NUM_REQS) variable_arbiter

(
)5

endmodule

.priority(priority_), .reqs(reqgs), .grants(grants)

3% (36) &
Digital Logic:

This is another important part. Some design questions will be asked.

- boolean algebra, de morgans theory

- K-map

- arithmetric logic (half adder/full adder/ how to use full adder count
no of 1's in 7 bit?carry ripple adder/comparator)

- how to use mux implement gate(or/not....)

- how to use NAND/NOR implement all gate not/or/and...? (use 4 NAND
implement XOR, use 4 NOR implement XNOR)

- how to use tri-state buffer and not gate to implement all gate?

- state matchine, state reduction

- sequence detector (overlay/non-overlay)

you can use state machine/shift register.

state machine, what is differece between Mealy/Moore state machine.
101/110/1001/1011/1010/1101/10010/101X1/10XX1 try yourself solve all

of them with both state matchin/shift register

- setup time/ hold time, where do they come from? how to solve them.
what is metastablity

- give you an inifinite sequence, you every 1 bit every cycle, write the
state matchine if the current number can be divided by 5?

what if MSB coming first? what if LSB coming first?

- how to do a divide by 2 clk divide? how about divide by 3? how to make
it 50% duty cycle? how to do a divide by 5 with 50% duty cycle?

- synchronizer (2 FF), toggle synchronizer(just google it)

- synchronous fifo code

- asynchronus fifo(there is a paper design and synthesis technique of
asynchronous fifo just understand it, it use grey code)

- how to write a fix-priority arbiter, how to write a round robind
arbiter (use kill chain). How do you verify it?

- google "ASIC interview puzzle", some people like use questions from
it.

- how to write a CAM?

- how to design HW linked 1list

3% (36) &
continue

array_reduction(sum(), product(), and(),or(),xor())

example:

byte b[] = {1,2,3,4}

int d = b.sum() with (int'(item>=2)) // find total count of numbers bigger
or equal to 2, notice you must have an int' casting

int d = b.sum() with (item>=2? item : @) // sum of numbers bigger or equal
to 2

logic bit_arr[1024]

int y = bit_arr.sum() with (int'(item)); // without the casting, total
result will be /1 ONLY!

suppose you have an associate array of object queue (m_object[$]
m_associate_array[*]), how to pass this type as function argument? use
typedef

- class

remember super.new() will always be called implicitly

polymorphism (same as C++, you'd better know virtual table pointer to
explain how run time find the implementation)

difference between static task/ task static

difference between task/function

local/protected attribute, what is the usage

pure virtual class/pure virtual function

when to use class scope resolution operator(static element/static
method/typedef/enum....)

parameterized class with example in LRM, typedef will help handling

parameterized significantly

- procedure
initial block (you have have multiple initial block)
always block
final block

how to generate a clock with initial block?

reg clk
real clock period = ****x*;

initial begin
clk = 0;
forever begin
#(clock_period/2) clk = ~clk;
end
end

automatic variable / static variable difference?
fork join/join_none/join_any

for (int 1 = @; 1 <=10; i++) begin
fork
automatic int j = 1i; //note you must declare a automatic
copy of j here, otherwise it will be same value (10) when you spawn all
some_task()
begin
print something;
some_task(j);
end
join_none
end

another trick with static/automatic variable, following code will print
1llns 20, 20ns 20. Why ? Because task is static, even for the argument. how to
fix this? use task automatic print(i)
suppose in a module,
task print(i);
#10ns;
$display("%s ns %d",$time,i);
endtask

initial begin
fork
begin
#1ns;
print(10);
end
begin

#10ns;
print (20);
end
join
end

interstatement assignment/intrastatement assignment difference.

#5 a = b;
a = #5 b;
a = @(posedge clk) b

a = repeat (5) @(posedge clk) b

how to use disable fork/wait fork

fine grained process _control (process::self() functions
await/status/kill/suspend/resume)

foreach usage(foreach A[i,,k]) //note you can skill something here

what is the difference between passing an object handle by reference
and by value? (you can modify the object content in both case, but if you
pass by reference, you can even reassign the object handle, while in pass by
value case, you are playing with the copy of object handle. just remember the
normal case of integer argument...) so there is a problem in C++, how do you
modify a pointer function argument? use void my_func(int* &m_pointer)

- clocking block, read the chapter carefully, i think most people do
not understand it good
synchronize signals to clock for sampling/driving
input/output skew

- interface, read the chapter
why do we need virtual interface?

- semaphores/mailbox/event, know the operations

- assertion (this is a long long long long chapter in LRM, personally
I donot have too much experience in writing assertions, but try some
examples)
google system verilog assertion, there is some tutorial in duolos
dot com which should be enough for interview

- constraint (this is REALLY important, almost every onsite will be
several questions)
how to write a onehot/onecold constraint? do not use function. one
cold is similar to onehot just add a "~"
rand bit [7:0] a;

constraint one_hot cons{
a & (a-1) ==0;
a !=0;
}
how to write constraint to unique array element, do not use unique
in LRM 2012
rand bit[31:0] a[100];
foreach (a[i]) {
foreach (a[j]) {
if (i<J) |
a[i] !'= a[]l;
}

}

how to write a constraint for 8 queen? board[8][8]

how to write a constraint to constraint the size of dynamic array
how to write a constraint for increasing array

rand/randc difference

how to implement randc without using randc

solve...before, why do we need this?

dist := :/ difference

inside

- functional coverage (read the LRM and try some real example)

- DPI (export/import DPI functions, how to compile a shared library?
how to solve DPI scope issue?)

3% (36) &
2. UM
I think most companies want you to have exp in UVM. So read the UVM
cookbook should be enough.
- TLIM1 (I do not use TLM2 and nobody ask me anything about TLM2)
uvm_.*port/imp/export (I think UVM cookbook has a good explain for
imp/export)
imp is directing "export" the implementation in that uvm_component
export is "export" the implementation for sub uvm_components inside
the current uvm_component

- read through your own uvm projects on

define uvm_sequence_item (req/rsp)

writing
uvm_driver/uvm_sequencer/uvm_monitor/uvm_scoreboard/uvm_agent/uvm_monitor

writing uvm_sequence (What is UVM reactive sequence, my understanding
is stimulus will be based on response from driver,
put_reponse()/get response(), also note you need to set id info() to guide it
from driver into correct sequence)

- remember all uvm_phase, which phase are task, which are function?

- what phase is top-down and what is bottom up?

- what is difference between uvm_config db and uvm_resource_db

- why do we need uvm_factory? (for easy type overriding without
modifying base code)

- what is a virtual sequence/sequencer, why do we need

- how to pass a virtual interface through uvm _config db

- sequence layering (translation sequence)

Bascially for UVM questions I do not think they will be out of the scope
of UVM cookbook. If you have time you can also read through the UVM class
reference, but that might be way too much

3% (36) S

Leetcode

I only do linked list/array/hash table/bit manuplation/two pointer/binary
search/simple DP/simple DFS,BFS for preparing HW interview

numbers i do
1/3/5/7/9/15/16/17/18/19/20/21/22/23/26/27/33/35/39/40/46/48/49/53/55/62/64/6
9/70/78/80/82/83/88/89/90/136/137/141/142/148/155/160/162/167/169/189/190/191
/203/206/215/225/229/231/232/234/237/242/260/268/278/287/301/326/342/374/384/
/693

