
Some more interview questions:

常见的题目有sequence detector, edge detector, moore/mealy machine, frequency
divider, round robin arbiter, setup/hold等等

很少有面试官会问，问到也不会问很复杂的用法
熟练使用assertion来check简单的req, ack信号即可

func coverage知道怎么自定义bin，ignore_bin, cross coverage, transition
coverage我觉得就够了

1. swap 2 variable without using temp (this is asked several times)

 int a = 5;

 int b = 10;

 a = a ^ b; // a is a ^ b , b is b

 b = a ^ b; // a is a ^ b , b is b ^ (a ^ b) = a ^ (b ^ b) = a ^ 0 = a

 a = a ^ b; // a is (a ^ b) ^ a = (a ^ a) ^ b = 0 ^ b = b, b is a
already

 why use xor because using add will overflow (a = a + b; b = a - b; a = a -
b; will overflow for a+b)

2. reverse single linked list(iterative/recursively) leetcode problem

3. fibnacci series (iterative/recursive), some phone interview

4. determine if an integer is palindrome ("12321") , leetcode problem

5. reverse all bits of number in binary(0b111001 -> 0b100111), use bit
manipulation, leetcode problem

6. find if a linked list has loop, leetcode problem

7. how do you write a fix priority arbiter? (I think most people can not
find a good solution online, the following code comes from cornell course
ECE5745)

 module fixed_arbiter #(parameter NUM_REQS=4)

 (

 input [NUM_REQS-1:0] req;

 output[NUM_REQS-1:0] grants;

);

 wire[NUM_REQS:0] kills;

 assign kills[0] = 1'b0;

 wire[NUM_REQS-1] grants_int;

 genvar i ;

 generate

 for (i = 0; i < NUM_REQS; i++) begin: per_req_logic

 assign grants_int[i] = !kills[i] & reqs[i];

 assign kills[i+1] = kills[i] | grants_int[i];

 end

 endgenerate

 assign grants = grants_int;

 endmodule

 8. how to write a round robin arbiter? (If you can understand item 7 how
kill chain works, then it is easy to understand following code, you first
need to have a variable priority arbiter, which takes an input of priority,
then you can build the round robin arbiter with a shift register and the
variable priority arbiter)

 module variable_priority_arbiter#(parameter NUM_REQS=4)

 (

 input [NUM_REQS-1:0] priority, // one hot input of variable
priority

 input [NUM_REQS-1:0] reqs,

 output [NUM_REQS-1:0] grants

);

 /*

 suppose the input priority is 00100

 priority_int will be 00000 00100

 imagine the reqs_int is 01000 01000 //case 1

 imagine the reqs_int is 00100 00100 //case 2

 imagine the reqs_int is 00010 00010 //case 3

 */

 wire [2*NUM_REQS:0] kills;

 wire [2*NUM_REQS-1:0] priority_int = { {NUM_REQS{1'b0}}, priority
}; //extend priority

 wire [2*NUM_REQS-1:0] reqs_int = {reqs,reqs}; //copy reqs

 wire [2*NUM_REQS-1:0] grants_int;

 assign kills[0] = 1'b0;

 genvar i;

 generate

 for (i = 0; i < 2*NUM_REQS; i=i+1) begin: per_req_logic

 assign grants_int[i] = priority_int[i] ? reqs_int[i]:
(!kills[i] & reqs_int[i]);

 assign kills[i+1] = priority_int[i]? grants_int[i] :
(kills[i] | grants_int[i]);

 end

 endgenerate

 assign grants = (grants_int[NUM_REQS-1:0] | grants_int[2*NUM_REQS-
1:NUM_REQS];

 endmodule

 module round_robin_arbiter#(parameter NUM_REQS=4, paramater
RESET_PRIORITY = 1)

 (

 input clk,

 input rst,

 input [NUM_REQS-1:0] reqs,

 output [NUM_REQS-1:0] grants

);

 wire priority_en = |grants;

 wire [NUM_REQS-1:0] priority_next;

 assign priority_next = {grants[NUM_REQS-2:0],grants[NUM_REQS-1]};

 wire [NUM_REQS-1:0] priority_;

 // a reset_req with reset value as RESET_PRIORITY

 reset_reg#(NUM_REQS,RESET_PRIORITY) priority_req

 (

 .clk(clk), .reset(reset), .en(priority_en), .d(priority_next),
.q(priority_)

);

 //instantiate variable arbiter

 variable_priority_arbiter#(NUM_REQS) variable_arbiter

 (

 .priority(priority_), .reqs(reqs), .grants(grants)

);

 endmodule

3% (36) 👎

Digital Logic:

 This is another important part. Some design questions will be asked.

 - boolean algebra, de morgans theory

 - K-map

 - arithmetric logic (half adder/full adder/ how to use full adder count
no of 1's in 7 bit?carry ripple adder/comparator)

 - how to use mux implement gate(or/not....)

 - how to use NAND/NOR implement all gate not/or/and...? (use 4 NAND
implement XOR, use 4 NOR implement XNOR)

 - how to use tri-state buffer and not gate to implement all gate?

 - state matchine, state reduction

 - sequence detector (overlay/non-overlay)

 you can use state machine/shift register.

 state machine, what is differece between Mealy/Moore state machine.

 101/110/1001/1011/1010/1101/10010/101X1/10XX1 try yourself solve all
of them with both state matchin/shift register

 - setup time/ hold time, where do they come from? how to solve them.
what is metastablity

 - give you an inifinite sequence, you every 1 bit every cycle, write the
state matchine if the current number can be divided by 5?

 what if MSB coming first? what if LSB coming first?

 - how to do a divide by 2 clk divide? how about divide by 3? how to make
it 50% duty cycle? how to do a divide by 5 with 50% duty cycle?

 - synchronizer (2 FF), toggle synchronizer(just google it)

 - synchronous fifo code

 - asynchronus fifo(there is a paper design and synthesis technique of
asynchronous fifo just understand it, it use grey code)

 - how to write a fix-priority arbiter, how to write a round robind
arbiter (use kill chain). How do you verify it?

 - google "ASIC interview puzzle", some people like use questions from
it.

 - how to write a CAM?

 - how to design HW linked list

3% (36) 👎

continue

 array_reduction(sum(), product(), and(),or(),xor())

 example:

 byte b[] = {1,2,3,4}

 int d = b.sum() with (int'(item>=2)) // find total count of numbers bigger
or equal to 2, notice you must have an int' casting

 int d = b.sum() with (item>=2? item : 0) // sum of numbers bigger or equal
to 2

 logic bit_arr[1024]

 int y = bit_arr.sum() with (int'(item)); // without the casting, total
result will be 0/1 ONLY!

 suppose you have an associate array of object queue (m_object[$]
m_associate_array[*]), how to pass this type as function argument? use
typedef

 - class

 remember super.new() will always be called implicitly

 polymorphism (same as C++, you'd better know virtual table pointer to
explain how run time find the implementation)

 difference between static task/ task static

 difference between task/function

 local/protected attribute, what is the usage

 pure virtual class/pure virtual function

 when to use class scope resolution operator(static element/static
method/typedef/enum....)

 parameterized class with example in LRM, typedef will help handling

parameterized significantly

 - procedure

 initial block (you have have multiple initial block)

 always block

 final block

 how to generate a clock with initial block?

 reg clk

 real clock_period = *****;

 initial begin

 clk = 0;

 forever begin

 #(clock_period/2) clk = ~clk;

 end

 end

 automatic variable / static variable difference?

 fork join/join_none/join_any

 for (int i = 0; i <=10; i++) begin

 fork

 automatic int j = i; //note you must declare a automatic
copy of j here, otherwise it will be same value (10) when you spawn all
some_task()

 begin

 print something;

 some_task(j);

 end

 join_none

 end

 another trick with static/automatic variable, following code will print
11ns 20, 20ns 20. Why ? Because task is static, even for the argument. how to
fix this? use task automatic print(i)

 suppose in a module,

 task print(i);

 #10ns;

 $display("%s ns %d",$time,i);

 endtask

 initial begin

 fork

 begin

 #1ns;

 print(10);

 end

 begin

 #10ns;

 print (20);

 end

 join

 end

 interstatement assignment/intrastatement assignment difference.

 #5 a = b;

 a = #5 b;

 a = @(posedge clk) b

 a = repeat (5) @(posedge clk) b

 how to use disable fork/wait fork

 fine grained process_control (process::self() functions
await/status/kill/suspend/resume)

 foreach usage(foreach A[i,,k]) //note you can skill something here

 what is the difference between passing an object handle by reference
and by value? (you can modify the object content in both case, but if you
pass by reference, you can even reassign the object handle, while in pass by
value case, you are playing with the copy of object handle. just remember the
normal case of integer argument...) so there is a problem in C++, how do you
modify a pointer function argument? use void my_func(int* &m_pointer)

 - clocking block, read the chapter carefully, i think most people do
not understand it good

 synchronize signals to clock for sampling/driving

 input/output skew

 - interface, read the chapter

 why do we need virtual interface?

 - semaphores/mailbox/event, know the operations

 - assertion (this is a long long long long chapter in LRM, personally
I donot have too much experience in writing assertions, but try some
examples)

 google system verilog assertion, there is some tutorial in duolos
dot com which should be enough for interview

 - constraint (this is REALLY important, almost every onsite will be
several questions)

 how to write a onehot/onecold constraint? do not use function. one
cold is similar to onehot just add a "~"

 rand bit [7:0] a;

 constraint one_hot_cons{

 a & (a-1) ==0;

 a !=0;

 }

 how to write constraint to unique array element, do not use unique
in LRM 2012

 rand bit[31:0] a[100];

 foreach (a[i]) {

 foreach (a[j]) {
 if (i<j) {

 a[i] != a[j];

 }

 }

 }

 how to write a constraint for 8 queen? board[8][8]

 how to write a constraint to constraint the size of dynamic array

 how to write a constraint for increasing array

 rand/randc difference

 how to implement randc without using randc

 solve...before, why do we need this?

 dist := :/ difference

 inside

 - functional coverage (read the LRM and try some real example)

 - DPI (export/import DPI functions, how to compile a shared library?
how to solve DPI scope issue?)

3% (36) 👎

2. UVM

 I think most companies want you to have exp in UVM. So read the UVM
cookbook should be enough.

 - TLM1 (I do not use TLM2 and nobody ask me anything about TLM2)

 uvm_.*port/imp/export (I think UVM cookbook has a good explain for
imp/export)

 imp is directing "export" the implementation in that uvm_component

 export is "export" the implementation for sub uvm_components inside
the current uvm_component

 - read through your own uvm projects on

 define uvm_sequence_item (req/rsp)

 writing
uvm_driver/uvm_sequencer/uvm_monitor/uvm_scoreboard/uvm_agent/uvm_monitor

 writing uvm_sequence (What is UVM reactive sequence, my understanding
is stimulus will be based on response from driver,
put_reponse()/get_response(), also note you need to set_id_info() to guide it
from driver into correct sequence)

 - remember all uvm_phase, which phase are task, which are function?

 - what phase is top-down and what is bottom up?

 - what is difference between uvm_config_db and uvm_resource_db

 - why do we need uvm_factory? (for easy type overriding without
modifying base code)

 - what is a virtual sequence/sequencer, why do we need

 - how to pass a virtual interface through uvm_config_db

 - sequence layering (translation sequence)

 Bascially for UVM questions I do not think they will be out of the scope
of UVM cookbook. If you have time you can also read through the UVM class
reference, but that might be way too much

3% (36) 👎

Leetcode

I only do linked list/array/hash table/bit manuplation/two pointer/binary
search/simple DP/simple DFS,BFS for preparing HW interview

numbers i do

1/3/5/7/9/15/16/17/18/19/20/21/22/23/26/27/33/35/39/40/46/48/49/53/55/62/64/6
9/70/78/80/82/83/88/89/90/136/137/141/142/148/155/160/162/167/169/189/190/191
/203/206/215/225/229/231/232/234/237/242/260/268/278/287/301/326/342/374/384/
/693

