Ql. EFEEH. aSEE. REREER. BAYIR BRI RAER
yuE

A fixed-size array: Its size is determined at the time of definition, and it cannot be changed afterwards. It is
often used to handle data sets of fixed size that will not change.

int array[10]; // Declare an array with 10 elements
A dynamic array: Its size can be dynamically changed at runtime, using the new operator to allocate space. The
main usage scenario is when the number of elements is uncertain.

int dynamic array[]; // Declare a dynamic array

dynamic array = new[10]; // Allocate space for 10 elements

An associative array: It is an unordered data set, where data is stored and accessed through key-value pairs,
and allows any data type to be used as an index. It is mainly used for lookup tables or dictionary-like data
structures.

int associative array[string]; // Declare an associative array with a string

index

associative array["key"] = 1; // Store data with the key "key"

A queue: It is a data structure where elements can be inserted and removed at any position, and its size can be
changed dynamically.

int queue[$]; // Declare a queue

queue.push back(10); // Add 10 to the end of the queue

The fork...join, fork..join_any, and fork..join_none statements in SystemVerilog are used for parallel block
execution. They define how and when control is transferred back from the spawned parallel blocks to the main
thread.

Q2.fork..join/fork...join_any/fork...join_none Z[BIAYR[E]

1. fork..join: The join keyword ensures that all blocks inside the fork...join have completed execution
before control is passed back to the main thread. In other words, the main thread will wait for all forked
tasks to finish. This is akin to a "barrier synchronization".

fork
begin: taskl
#10;
Sdisplay ("Task 1 finished");
end
begin: task2
#20;
Sdisplay ("Task 2 finished");
end

join // Main thread waits for both tasks to finish

2. fork..join_any: The join_any keyword passes control back to the main thread as soon as any one of the
parallel blocks completes execution. In this case, the main thread does not wait for all tasks to finish; it
moves on as soon as the first task completes.

fork
begin: taskl
#10;
Sdisplay ("Task 1 finished");
end
begin: task2
#20;
Sdisplay ("Task 2 finished");
end

join any // Main thread continues as soon as any one task finishes

3. fork..join_none: The join_none keyword does not wait for any of the forked tasks to complete. As soon
as the fork is encountered, control is passed back to the main thread. The forked tasks continue to
execute independently.

fork
begin: taskl
#10;
Sdisplay ("Task 1 finished");
end
begin: task2
#20;
Sdisplay ("Task 2 finished");
end
join none // Main thread does not wait for any task to finish
Note: In fork..join_none, tasks continue in the background, and they can lead to race conditions if they are not
properly managed. It's a best practice to use join or join_any to ensure proper synchronization and avoid
unexpected behavior.

Q3.mailbox, event. semaphore Z[BIHYE[E

This question is about different mechanisms for inter-process communication in SystemVerilog.

1. Mailbox: Mailbox is a queue-based mechanism for inter-process communication that can be used to
send and receive messages between processes. In SystemVerilog, a mailbox can be bounded or
unbounded. A bounded mailbox has a fixed size, while an unbounded mailbox can receive an unlimited
number of messages.

For example:

mailbox mb;

initial begin

mb = new(); // Create a new mailbox

mb.put ("Hello"); // Send a message to the mailbox

end

initial begin
string msg;

mb.get (msg); // Receive a message from the mailbox

Sdisplay (msqg) ;
end
2. Event: An event is a synchronization mechanism in SystemVerilog that allows a process to wait for one
or more specific events to occur. A process can trigger an event by calling the -> operator, and other
processes can wait for the event using the @ operator.

For example:

event e;

initial begin
->e; // Trigger event e
AR

end

initial begin
@e; // Wait for event e to occur
RN
Sdisplay ("Event occurred");

end

3. Semaphore: A semaphore is a synchronization mechanism that can be used to limit access to shared
resources.

A semaphore in SystemVerilog can be owned by one or more processes. When a process owns a semaphore,
other processes that want to get the semaphore must wait.

For example:

semaphore s;

initial begin

s = new(l); // Create a new semaphore with initial value 1

s.get () ; // Get the semaphore

// Access shared resources here

s.put () ; // Release the semaphore
end

Q4.@(event_handle)f] wait(event_handle.triggered) X 5l

Both @ (event handle) and wait (event handle.triggered) are used to block execution until a certain
event occurs, but they behave differently in SystemVerilog.

1. @(event handle): The @ operator with an event handle in its parenthesis is a built-in SystemVerilog
feature that allows one to suspend the current process until the specified event is triggered. The
process resumes immediately after the event is triggered. It does not check the event's trigger
condition.

event el;
initial begin
@(el);
Sdisplay ("Event el triggered, resuming execution.");
end
initial begin
#10;
->el; // Trigger event el after 10 time units

end

2. wait (event handle.triggered): The wait statement suspends the current process until the
condition in its parenthesis becomes true. In this case, the condition is event handle.triggered,
which will be true if the event has been triggered since the last time it was checked. Unlike @,
the wait statement checks the event's trigger condition.

event el;
initial begin

wait (el.triggered);

Sdisplay ("Event el triggered and checked, resuming execution.");
end
initial begin

#10;

->el; // Trigger event el after 10 time units
end
The main difference is the way they check for the event. @ (event handle) waits for the event trigger and
then continues execution, while wait (event handle.triggered) waits for the trigger and checks the
condition before continuing. Therefore, if multiple triggers occur before the wait statement is executed, they
will not be recognized by @ (event handle) but will be recognized by wait (event handle.triggered).

Q5.task #[] function BEX3|

omit

Q6.f55A clocking block FJ#F4k

Using clocking blocks in SystemVerilog has several advantages, especially in terms of timing and
synchronization. Here are some of them:

1. Clearly defined timing: A clocking block provides an unambiguous way to specify the timing of inputs
and outputs with respect to a particular clock edge. It clarifies when input is sampled and when output
is driven with respect to the clock.

clocking cb @ (posedge clk);
input a, b;
output z;
endclocking
In the example above, inputs a and b are sampled and output z is driven at the positive edge of the c1xk.

2. Synchronization: A clocking block can encapsulate the synchronization of multiple signals with respect
to the same clock, which can simplify the design and improve readability.

3. Skew handling: In simulation, clocking blocks ensure that there is no race condition between the clock
edge and the data change because all activities within a clocking block are scheduled in a deterministic
order.

4. Convenience for testbench development: In a testbench, clocking blocks can be used to create clock-
driven sequences and checks in a straightforward manner. The ## operator can be used to denote clock
cycles in assertions, sequences, and properties.

assert property (@(cb) a |-> ##1 b);
In the above property, the ##1 denotes a delay of one clock cycle as per the clocking block cb.

5. Improved integration with verification methodologies: Clocking blocks are supported and
extensively used in advanced verification methodologies such as UVM (Universal Verification
Methodology). They allow consistent reference to timing throughout the verification environment.

Q7.[EE FIFO F18E FIFO B9/ERFIX R (CDCQ)

Synchronous FIFO (First-In-First-Out) and Asynchronous FIFO are two types of FIFO memory buffers used in
digital systems for data storage and transfer. Here are their purposes and the main differences between them:

Purpose:

1. Synchronous FIFO: It's used when the read and write operations occur at the same clock frequency, i.e.,
the data producer and the data consumer are operating at the same clock speed.

2. Asynchronous FIFO: It's used when the read and write operations happen at different clock
frequencies. In other words, the data producer and the consumer operate at different clock speeds.

Differences:

1. Clocking Scheme: In synchronous FIFO, a single clock controls both reading and writing operations. In
asynchronous FIFO, there are two separate clocks: one for reading and another for writing.

2. Design Complexity: Asynchronous FIFO design is more complex than synchronous FIFO because of the
need to handle the data transfer between two different clock domains, which introduces additional
considerations like metastability.

3. Use Cases: Synchronous FIFOs are suitable in applications where data rate does not vary, such as in
some DSP applications. Asynchronous FIFOs are crucial in systems with varying data rates or different
clock domains, such as in data communication or when interfacing between two asynchronous systems.

Here's an example of a simple synchronous FIFO design:

module fifo #(parameter DEPTH = 16, WIDTH = 8) (

input wire clk,

input wire reset,

input wire wr_en,

input wire [WIDTH-1:0] wr data,
output wire [WIDTH-1:0] rd data,

input wire rd en

reg [WIDTH-1:0] memory [0:DEPTH-1];
reg [WIDTH-1:0] rd data reg;

integer write pointer = 0;
integer read pointer = 0;
assign rd data = rd data reg;

always @ (posedge clk or posedge reset) begin
if (reset) begin
write pointer <= 0;
read pointer <= 0;
end else begin
if (wr_en) begin
memory [write pointer] <= wr data;
write pointer <= write pointer + 1;
end
if (rd _en) begin
rd data reg <= memory[read pointer];
read pointer <= read pointer + 1;
end
end
end
endmodule
This FIFO is synchronous because it only has one clock c1k that controls both the reading and writing
operations.

Q8.SystemVerilog 1 OOP 9=K4F4

omit

QO JFIRITTF ref KBURIIRRR

omit

Q10.5MER29sRANMaIfsERE, BB LAA T

In SystemVerilog, constraints are used to guide the randomization process. External constraints are constraints
defined outside of the class and can be used to modify the behavior of the randomization. There are mainly
two ways to apply external constraints in SystemVerilog: inline constraints and constraint blocks.

1. Inline Constraints: They can be applied directly when calling the randomize () function by using
the with keyword. This is a way to apply immediate or one-time constraints on variables during the
randomization process.

Example:

class MyClass;
rand bit [7:0] varl, wvar2;

endclass
MyClass obj = new();
// Randomize with an inline constraint

obj.randomize () with { varl < var2; };
In the example above, the variables varl and var2 are randomized such that var1l is always less than var2.

2. Constraint Blocks: You can also apply external constraints by creating a constraint block using
the constraint keyword. This can be useful for applying the same set of constraints multiple times.
These constraint blocks are defined outside of the class but are associated with a class instance.

Example:

class MyClass;
rand bit [7:0] wvarl, var2;

endclass
MyClass obj = new/();

// Define an external constraint block

constraint cl { obj.varl < obj.var2; }

// Randomize using the constraint block

obj.randomize () with { cl; };

In the example above, the constraint block c1 ensures that var1 is always less than var2 during
randomization.

Remember that if there are any conflicts between the internal (those defined inside the class) and external
constraints, the solver will fail, and the randomization will return 0 (false).

QI AHEEBER. NEEEER. SVA BEXREPEEHEEMT4N

In the context of verification, coverage is a metric used to measure the extent to which the design or test has
been exercised by a test suite. Coverage is crucial in finding holes in your testing and ensuring that your testing
is comprehensive. Here is what each type of coverage measures:

1. Code Coverage: Code coverage measures how much of the design code has been executed during
simulation. It gives an idea of how much of the design's logic or structure has been tested. The different
types include line coverage, toggle coverage, branch coverage, condition coverage, path coverage, FSM
state and transition coverage, and so on.

2. Functional Coverage: Functional coverage measures how much of the design's functionality has been
covered during testing. It's user-defined and represents whether the scenarios, corner cases, and
protocol-specific behaviors have been checked. Functional coverage is usually specified in the form of
covergroups, coverpoints, and crosses in SystemVerilog.

covergroup cg example @ (posedge clk);
coverpoint dut.signal a;
coverpoint dut.signal b;
cross signal a, signal b; // Cross coverage between signal a and signal b

endgroup

3. Assertion Coverage (SVA Coverage): Assertion coverage measures how many assertions have been
proven true or false during simulation. Assertions are used to check for conditions that should (or
should not) occur during the operation of the design. SVA coverage allows us to track whether all
assertions have been adequately checked during simulation.

// Example of an assertion
assert property (@ (posedge clk) reset n |-> l!req);
In the example above, the assertion checks that req is not asserted right after the de-assertion of reset n.

All these types of coverage metrics are key to a comprehensive verification strategy, as they provide different
perspectives on the design's verification status. Code coverage shows what has been executed, functional
coverage shows what functionality has been tested, and assertion coverage shows what assertions have been
checked. Together, they can provide a holistic picture of the verification status.

Q12. 9+ AI=ZEEaE T
B2 2T B rer.
FALA o #B T T

omit

Q13RI SHIH AT SHHUTR

In SystemVerilog, assertions are used to validate the behavior of a design, and they can be classified into two
categories: immediate assertions and concurrent assertions. Here are their characteristics:

1. Immediate Assertions: These are evaluated at the point of their occurrence in the procedural code. An
immediate assertion must complete in zero simulation time and cannot span across multiple time
points. It evaluates a Boolean expression, and if the expression is false, it will immediately raise an
assertion failure.

Example:

initial begin

assert (reset n == 1'b0) else Serror ("Reset is not asserted at start!");

end
In this example, the immediate assertion checks if reset n is low at the start of the simulation. If not, it will
immediately report an error.

2. Concurrent Assertions (SVA - SystemVerilog Assertions): These are evaluated continuously over time
and can span across multiple time points. They are used to express more complex temporal behaviors
and relationships between signals in the design. Concurrent assertions can be used in initial blocks,
always blocks, and can be directly placed in modules.

Example:

// Concurrent assertion
always @ (posedge clk) begin
assert property (reset n |[-> ##[1:5] !req);

end
In this example, the concurrent assertion checks that after reset n is deasserted, reg should not be asserted
for the next 1 to 5 clock cycles. This assertion will be continuously checked at every positive edge of c1k.

In conclusion, immediate assertions are used for point-in-time checks, while concurrent assertions are used for
temporal or sequential checks in the design. Both are powerful tools for verifying the correctness of a design.

Q14.SystemVerilog FHE [FIXSSRIBFEAILE

omit

Q15 AHMARIESIERYFE =

Ensuring completeness in verification involves multiple strategies and methodologies to ensure that the design
has been thoroughly tested and validated under all relevant scenarios. Here are a few strategies that can be
adopted:

1. Coverage Driven Verification: This strategy aims to achieve high code, functional, and assertion
coverage. It includes writing tests to cover all the scenarios not covered initially and refining tests until
high coverage is achieved. This ensures all parts of the design and all functionalities have been
exercised and verified.

2. Assertions: Use immediate and concurrent assertions to verify the design's behavior in both point-in-
time and over time scenarios. Assertions are a powerful tool for checking complex temporal
relationships in a design.

3. Directed and Randomized Testing: Directed tests are used to check specific behaviors and scenarios,
while randomized tests are used to explore unexpected corner cases and rare conditions.

4. Formal Verification: For certain designs and design components, formal verification can be used to
prove whether the design meets the specification under all possible conditions.

5. Use of Verification IP and Methodologies: Verification IPs and methodologies like UVM (Universal
Verification Methodology) can be used to create comprehensive verification environments.

6. Regression Testing: Regular regression testing is essential to ensure any changes or updates do not
introduce new bugs or errors.

7. Peer Review and Inspection: Regular code reviews and inspections can help catch issues that
automated tools may miss.

8. Use of Checkers and Monitors: Checkers and monitors can be used in the verification environment to
check the correct behavior of the design during simulation.

Remember that it's not enough to just write tests and run them. The key is to analyze the results, improve the
test based on these results, and continuously refine and expand the test suite until high coverage is achieved.
Completeness in verification requires a combination of these strategies and a robust verification plan.

Q16ANELYRF":="F1"/"RIX 3

In SystemVerilog, the distinction between ":=" and ":/" in weighted constraints lies in their constraint solving
behavior.
1. :=!ltis a hard constraint. This means it is a requirement that must be met. If a hard constraint cannot

be satisfied, the constraint solver will fail and randomization will return 0 (false).

Example:

class MyClass;
rand bit [7:0] wvar;
constraint ¢ { var := 8'hA5; } // var will always be 8'hA5

endclass

2. :/:ltis a soft constraint. This means it is a preference rather than a requirement. If a soft constraint
cannot be satisfied, the constraint solver will still try to satisfy the other constraints.

Example: é SO'E-E Vor == l) %

class MyClass;
rand bit [7:0] wvar;
constraint c¢ { var ;L 2; } // var will try to be 2, but it's not a requirement

endclass

Q17.rand ¥ randc X3

The difference between rand and randc in SystemVerilog is in the random number generation pattern they
produce.

1. rand: It generates a random number every time it's called. It can produce the same number on
consecutive calls, as each call is statistically independent.

class MyClass;

rand bit [7:0] wvar;
endclass
MyClass obj = new();

obj.var.rand(); // Generates a random number

2. randc: It stands for random-cyclic. It generates a random number every time it's called, but will not
repeat any value until it has generated all possible values. Once all possible values have been
generated, it starts a new cycle of the same set of numbers.

class MyClass;
randc bit [7:0] var;
endclass
MyClass obj = new();
obj.var.randc(); // Generates a random number, but won't repeat until all wvalues
are generated
In the examples above, var will hold a random value after the rand or randc function is called.

Q18.break, continue [returen Y& X %

omit

Q19.function & return BEGHITZ/G, function BFE| TR
EEaESIITE

Q20 & s tlidFaaHI X Bl

omit

Q1A A EERMRKMARHITEL

omit

Q22.setup F hold iEFISBIEH4

omit

Q23.SVA H and. intersect, or, throughout, $past Z1{afsH
H

The operators and, intersect, or, throughout, and $past in SystemVerilog Assertions (SVA) are used to
create complex temporal properties. Here's how they are used:

1. and: Checks that two sequences are true at the same time.

Example:

property p; @(posedge clk) (reg && grant) |-> ##1 ack; endproperty
In this property, both req and grant must be true for ack to be true on the next clock cycle.

2. intersect: Checks that two properties are true in the same interval.

Example:

property p; @ (posedge clk) (a[*2] intersect b[*3]); endproperty
This property checks that a is true for 2 consecutive clock cycles at the same time that b is true for 3
consecutive clock cycles.

3. or: Checks that either one of two sequences is true.

Example:

property p; @ (posedge clk) (req || grant) |-> ##1 ack; endproperty
In this property, either req or grant must be true for ack to be true on the next clock cycle.

4. throughout: Specifies that a sequence must be true throughout the duration of another sequence.

Example:

property p; @(posedge clk) req |-> ##[1:3] grant throughout ack; endproperty
This property specifies that once req is true, grant must be true and ack must be true throughout the next 1

to 3 clock cycles.

5. S$past: This system function allows access to historical values of variables, expressions, or sequences.
It's used to specify behavior relative to past values.

Example:

property p; @Q(posedge clk) $past(reg, 2) |-> grant; endproperty

This property specifies that if reg was true 2 clock cycles ago, then grant must be true in the current clock
cycle.

nrovertsz ne @A (nogsodae o1k) yoor | — 41 ok ondoronorts
T T Y7 T 7 T U 7 T T P4

nrovertsz ne @A (nogsodaes o1k) ryoo | ack: ondoroncritsz
T T Y7 g 7 7 7 T T w4

i e 4 ol oy locl .

Q25 WA RIAZIER

To disable a constraint in SystemVerilog, you can use the disable keyword, followed by the name of the
constraint to be disabled when calling the randomi ze function.

Example:

Ol;) Cons o n e modle (of ;

class MyClass;
rand bit [7:0] wvar; . N < .
constraint cl { var < 8'h80; } biz)J \(Cpmsi*rvw@‘) (}V'\S‘b(‘o/‘:\f-motp(b%
endclass
MyClass obj = new();

obj.randomize () disable obj.cl; // Disables the constraint cl

Q26.deep copy ¥ shallow copy X 5|

omit

Q27 BAFIE RIS A B HRL:

omit

Q28.local [protected X!

The keywords 1ocal and protected in SystemVerilog are used to control the visibility and accessibility of
class members:

1. local: Alocal data member or method is accessible only within the class where it is declared. It cannot
be accessed from outside the class or from any derived classes.

class MyClass;
local bit [7:0] wvar;
endclass
In this example, var is only accessible inside MyClass.

2. protected: A protected data member or method is accessible within the class where it is declared and
in any classes derived from it, but it cannot be accessed from outside these classes.

class MyClass;

protected bit [7:0] var;

endclass
In this example, var is accessible inside MyClass and in any classes derived from MyClass, but not elsewhere.

Q29. 5 FAY debug /575G R

Debugging is an integral part of the design and verification process. Common debug methods in
SystemVerilog include:

1.

w

o

Print Statements: Using Sdisplay, Swrite, Smonitor, etc. to print the values of variables, states, or
conditions.

Waveform Viewing: Dumping waveforms using $dumpfile and $dumpvars, and analyzing them in a
waveform viewer.

Assertions: Assertions can help catch violations of expected behavior.

Using a Debugger: Many SystemVerilog simulators come with a debugger that can single-step through
code, set breakpoints, etc.

Code Review: Peer code reviews can be very effective in catching issues.

Logging: Creating a log file with timestamped events and variable values can be very useful.

Q30. SIS

omit

Q31.THEIRS, 1BEL. MHABHER

omit

Q32.packed array] unpacked array BIX 5|

omit

Q33.PEZEMEFNFFEZEERIX 5!

omit

Q34. JiEHEDMEESIREIEDRIX !

omit

Q35.initial ¥ always BY=[E

omit

Q36.FSM AIBILER? REIEHA?

omit

Q37 HFHERP AT AR AR

omit

Q38.7EENMRELSEMNZEIFFIIX5!

omit

o = I = > =
Q39.REENRLRERUISSEI
Here's an example of an asynchronous reset and synchronous deassertion (release) design:

always ff @(posedge clk or negedge reset n)

if (!reset n)

<= '0Q; // Asynchronous reset
gq Y

else
q <= d; // Synchronous deassertion
In this example, reset n is an active-low asynchronous reset. When reset nis 0, g is immediately reset to 0O,
regardless of the clock. When reset nis 1, g follows d at every rising edge of the clock.

Q40 I FEBIRIE T 70 AW R ER %

Digital circuits are generally categorized into two types:

1. Combinational Circuits: In these circuits, the output depends only on the current inputs. Examples
include basic gates (AND, OR, NOT), decoders, multiplexers, etc.

2. Sequential Circuits: In these circuits, the output depends on both the current inputs and the previous
state of the system. Examples include flip-flops, counters, shift registers, etc.

Q41.illegal_bins 0 ignore_bins ag 0 A= EARE? iR ES
STTABE=ZEST

In SystemVerilog, i11egal bins and ignore bins are used to classify certain values in coverage models:

/

1. illegal bins: Values that fallinto illegal bins will cause an error to be thrown during
simulation if they are hit.

covergroup cg example @ (posedge clk);

coverpoint dut.signal a {
bins legal values = {[0:10]};
illegal bins illegal values = {[11:5]};
}
endgroup
In this example, if signal a takes a value between 11 and $ (maximum value), it will be considered as an
illegal value and an error will be thrown.

2. ignore bins: Values that fall into ignore bins are ignored during coverage calculation. They do
not affect coverage statistics.

covergroup cg example @ (posedge clk);

coverpoint dut.signal b {
bins legal values = {[0:10]};
ignore bins ignored values = {[11:%1};
}
endgroup
In this example, if signal b takes a value between 11 and $ (maximum value), it will be ignored in the
coverage calculation.

In conclusion, hitsin illegal bins generate an error and do not count towards coverage, while hits
in ignore bins are simply ignored and also do not count towards coverage.

Q42 AER R T HBAM IR

omit

Q434 EEEXEMELS _EEEREN, x#lz WNHAE

In SystemVerilog, when assigning a 4-state logic value to a 2-state logic value, the x (unknown) and z (high
impedance) states map to a O state.

Example:

logic [3:0] four state = 4'blzxl;
bit [3:0] two state = four state; // will be 4'b1001
In this example, x and z in four state get mapped to 0 in two_state.

Q44257 this Zft4

Q45. 72 super Z{TA?

omit

Q46.7% IC IGuEF, FAT—RXIHLLRZAITHETIL

In Integrated Circuit (IC) verification, the following components are commonly randomized:

1. Inputs to the Design Under Test (DUT): Input stimuli are randomized to exercise the DUT under
various conditions and corner cases.

2. Timing parameters: To verify the DUT under different speed conditions and clock frequencies.

3. Operational modes: If the DUT supports various operational modes, these modes are randomized to
test the DUT's ability to switch between modes and operate correctly in each mode.

4. Configuration parameters: These are randomized to test the DUT's behavior under different
configurations.

QA7 BT REOREIEAB L SE ref

In SystemVerilog, you can return arrays from a function in a few ways:

1. Returning dynamic arrays and associative arrays: You can return dynamic arrays and associative
arrays directly from a function.

function int[] return array();
int arrayl[] = {1, 2, 3};
return array;

endfunction

2. Returning fixed-size arrays: For fixed-size arrays, you need to wrap the array inside a typedef or
a struct or class, because SystemVerilog does not allow returning packed arrays from a function.

typedef bit [7:0] array t[3];

function array t return array();
array t array = '{8'hl, 8'h2, 8'h3};
return array;

endfunction

Q48.1+24 2 clocking block By skew

omit

Q49 FH R SHIERHEHMB ML

Concurrent assertions in SystemVerilog are composed of several key components:

1. Sequence: A sequence defines a series of events that occur in specific temporal order.

2. Property: A property is a condition that a sequence must meet.
Assertion: An assertion specifies a property that must hold true. If the property is violated, an error or
warning is triggered.

Example:

sequence s; @ (posedge clk) req ##1 ack; endsequence
property p; @ (posedge clk) s |-> ##1 grant; endproperty
assert property(p); // Assertion

Q50 aAte EREY L 2B LD

In SystemVerilog, you can check if a randomization was successful by checking the return value of
the randomize method. It returns a 0 if randomization fails, and 1 if it succeeds.

Example:

class MyClass;
rand bit [7:0] wvar;
endclass
MyClass obj = new();
if (!'obj.randomize()) $display("Randomization failed!"); // Check if
randomization succeeded
In this example, a message is displayed if randomization of ob3 fails.

Q51.+4 & randomize()5i

The randomize() function in SystemVerilog can fail in the following situations:

¢ When the randomization constraints are conflicting or cannot be met.
e When the object being randomized is declared as "const".

Example:
class MyClass;

rand bit [7:0] data;

constraint c data { data < 10; data > 20; } // conflicting constraints

endclass

MyClass my obj = new();
if (!my obj.randomize()) $display("Randomization failed"); // This will display

"Randomization failed"
Q52.1\$ ﬁi‘IE 7_ ’ﬁi—l—.E\ Eﬁ'ﬁiﬁ

omit

Q53 =mFSEKREMTA

e Race condition: In concurrent computing, a race condition occurs when two or more threads can access
shared data and they try to change it at the same time, leading to non-deterministic outcomes.

» Hazards: In digital logic, hazards refer to a situation where changes in input variables do not change the
output correctly, mainly due to the propagation delays.

Q54 EEOBTAIFL

In SystemVerilog, virtual interfaces provide a level of abstraction that allows the same testbench to be reused
with different DUTs (Design Under Test). It also facilitates the use of the same testbench code for different
interface instances.

Q55 ZMHHERBTAMNE

omit

Q56.$cast TEAIRFEIRATUMAI(E

$cast is used in SystemVerilog for dynamic casting. It attempts to cast the object handle to the specified type
and returns true if successful, false otherwise.

Example:

class Base;

endclass

class Extended extends Base;

endclass

Base base handle;

Extended extended handle = new;

if (!Scast (base handle, extended handle)) Sdisplay("Cast failed");
Q57. A2 E2H TIRhE

e Post-simulation is performed to verify that the design behaves as expected after synthesis and place &
route, with the applied back-annotated delays from the actual layout.

e It's done by taking the design netlist (post-synthesis or post-place & route), applying back-annotated
delays, and then using the same testbench to simulate the design.

e It's essential because the synthesis and place & route processes can introduce changes and delays that
weren't there in the RTL (Register Transfer Level) design. Post-simulation ensures that the final

implementation of the design is correct.

Q58 WMAH T/EIhE

omit

Q59 MHARRIBE

omit

Q60.5 task HUEIY ref (ZIBEWERT, WNER task REEXTEER
17712, task SNEEREMRIRI AR EEIRERIEN T ERE
Z3 task HUTE A RERE!

When a task in SystemVerilog receives data via a ref argument, it receives a reference to the actual variable instead
of a copy of the value. Therefore, if the task modifies the data, the changes are seen immediately outside the task,
even before the task has finished execution.

Here's an example to illustrate this:

task my task(ref int data);
data = 10;
#5; // delay

data = 20;
endtask

initial begin
int data = 0;
fork
my task (data) ;

begin
#2; // delay
$display(data); // displays 10, even though my task has not finished execution

end
join
end
In this example, my task receives data as a ref argument and modifies it. The initial block that
callsmy task sees the modification to data before my task has finished execution.

Q6148 packed struct EX THEEIES
31:24 23:16 15:4 3:0 p1 p2 p3 p4

In SystemVerilog, packed structs can be used to aggregate multiple different data types into a single data type.
Here's how you can define the given data packet using a packed struct:

typedef struct packed {
bit [31:24] pl;

bit [23:16] p2;
bit [15:4] p3;
bit [3:0] p4;

} my packet t;

// Then you can declare a variable of this type:

my packet t packet;

Q62 FEN AN ERHA? BAREKREABEEEM case
s

omit

Q63.randomize with{... }’ARIZIR5S class PRUNRETAKE

omit

Q64 AR ETREN LRI UEIME S E Ei

omit

Q65. 9t A EIF R R SR E(E H !

omit

Q66 £0=FRE ISR A] BEF(EHIX P B RS TR ?

omit

Q67 HARRETA

omit

Q68 FEHIEETS AR T P

omit

Q69.F FSM iZE 5t NIes (FF%: 110110)

omit

Q70 M RITEFEE R BRI AEATIAIR

omit

Q71 ERAZMA

A virtual interface in SystemVerilog is a handle that points to an actual interface instance. It provides a way to
reference and use actual interface instances in testbench code, adding a layer of abstraction that allows for
greater reusability and configurability.

Example:

interface my if (input logic clk);
logic data;
modport source (output data);
modport sink (input data);

endinterface

class my class;

virtual my if.vif; // Declare a virtual interface handle in a class

endclass

Q72 FE X BIBEH L Z B HRLe

In SystemVerilog, the predefined random methods are randomize () and std: : randomize (). They are
used to randomize the values of variables and can be used with constraints for more controlled randomization.

The randomize () method cannot be overloaded directly, but constraints can be used to modify its behavior.

The execution order of randomization is from parent class to child class, which means constraints of parent
class are solved first. If randomize () fails, it returns O, else it returns 1.

class MyClass;
rand bit [7:0] data;

endclass

MyClass my obj = new();

if (!my obj.randomize()) $display("Randomization failed");
Q73 FE X HIBBHL ARG R AR,
omit

Q7430 X HIBEN 73 EZ R TIRAA IR TS

omit

Q75.package FigEH4 romsPrR —- f g

Packages in SystemVerilog are used to encapsulate definitions of data types, functions, tasks, and other items.
They are used to avoid naming collisions and make code more modular, allowing code reuse.

Example:

package my package;
typedef enum {RED, GREEN, BLUE} color t;
endpackage : my package

module my module;

import my package::*; // importing the package

my package::color t my color; // using a typedef from the package

Q76.package #{al{FH

omit

Q77 WMAIEFSEFEAER TR A

To call a method of a parent class in a subclass, use the super keyword:

class Base;
function void my function();

Sdisplay ("Base class function");

endfunction

endclass

class Child extends Base;
function void my function();

super.my function(); // calling the parent class function

Sdisplay ("Child class function");
endfunction

Q78.bit[7:0]#0 byte HtAKXF

omit

Q79 ZEFRYTT ARSI T EZB H AKX !
Methods inside a class are typically related to the data of the class and can access this data directly. They need
an object of the class to be invoked.

Methods outside a class, i.e., tasks or functions, are not directly associated with a class and don't need an
object to be invoked. However, they cannot directly access the data of a class.

To define a method outside a class, simply define a task or function outside of the class scope.

task my task;
// do something
endtask

class MyClass;

// class definition

Q80.UMAFZE AT IERE MAESES

Q81.modport BNFEIREHA

omit

Q82.struct 1 union B9F[E

omit

Q83.$rose F] posedge X5

omit

Q84.JN1AJ1E fork...join L5 kill IHFE

omit

Q85+ AR B EHEFIAIHYIRIE

Coverage-driven verification (CDV) is a technique used in the field of semiconductor device verification. The
goal is to ensure the design has been fully tested and there are no functional errors. The two key elements of
CDV are coverage collection and constraint random verification.

Q86 WMHIEEARESIEEEIRIR

In SystemVerilog, you can check if a handle points to a valid object by comparing it with null. If the handle is
null, it does not point to a valid object.

class MyClass;

endclass

MyClass my obj;

if (my obj == null) $display("my obj does not point to a valid object");
Q87.semaphore BBYZE(tA
omit

Q88. At A EAIS

omit

Q89.4{T7E clocking block RS EEE

Asynchronous signals are not associated with any clock signal. In a clocking block, all signals are implicitly
associated with the clock. Hence, you cannot directly declare an asynchronous signal inside a clocking block.
However, you can access the asynchronous signals outside the clocking block.

In SystemVerilog, a clocking block is primarily associated with a specific clock signal that dictates the clocking
edge and skews for all signals within the clocking block. This means that you cannot directly declare
asynchronous signals inside a clocking block.

However, you can still declare asynchronous signals outside the clocking block and use them inside the
clocking block. This can be done by directly referring to the external signals.

For example:

interface intf (input logic clk, input logic reset, inout logic [7:0] data);
clocking cb @(posedge clk); // Clocking block
default input #lns output #lns; // Set skews
inout data;

endclocking

endinterface : intf

module tb;
logic clk, reset, [7:0] data;
intf i intf(.clk(clk), .reset(reset), .data(data)); // Instantiate the

interface

initial begin

// Drive the asynchronous reset signal

reset = 1;
#5ns reset = 0;
end

initial begin
// Use the asynchronous reset signal in a procedural block
@ (negedge reset) data = 8'hAA; // Do something when reset is asserted
end
endmodule : tb
In this example, reset is an asynchronous signal that is declared outside the clocking block and used inside
the clocking block. Inside the clocking block, you can modify the data signal based on changes to
the reset signal.

HIKER

/N

Q0 LRI BERMINBEBER

omit

QI HAZEEITR], MizE LSS

omit

Q92 EHHIEFS A TSI L

The following precautions should be taken when using static methods in SystemVerilog classes:

e Static methods can be invoked using the class name, without the need for any object of that class.

o Static methods cannot access non-static class properties or methods directly, as they are not associated
with any specific object instance.

e You should make sure the static method does not try to modify any static variable in a way that could
cause problems when multiple instances of the class exist.

Example:

class MyClass;
static function void static func();
// do something
endfunction

endclass

// calling the static method
MyClass::static func();

Q93.initial 1 final PYX 5|

In SystemVerilog, initial and final are procedural blocks that are used to specify actions at the start and
end of simulation respectively.

e initial blocks begin execution at time O in simulation and only execute once.
e final blocks execute after all other activity in the simulation has finished, just before termination.

Qo4 EZfRfFhees, (ERMTASSEINEA

omit

QO5.AN{mE MRS dut ZEN=FEERKR

To avoid race conditions and hazards, you can:

e Use handshake signals or protocols to ensure that both the testbench and DUT are ready before they
start interaction.

e Use non-blocking assignments in always blocks to avoid race conditions.

o Use clocking blocks in testbenches to control the timing of signals,

Q96.logic, bit, wire X3l

omit

Q97 HARHSRE

omit

Q98.always@*5 always_comb X3

In SystemVerilog, always@* and always comb are similar in functionality, both used to describe
combinational logic.

e always@* block infers sensitivity list automatically. It includes all the variables that are on the RHS of
assignments in the block.

e always comb is similar to always@* but it includes some additional compile-time checks to ensure it
behaves as intended, such as prohibiting usage of certain system tasks or disabling of the block.

/s_/_\ A
Q99./ERIGIFZE T
A typical SystemVerilog verification environment consists of multiple components:

o Testbench: It contains the DUT and test scenarios.

o Driver: It drives the inputs to the DUT.

e Monitor: It observes the outputs from the DUT.

o Scoreboard: It checks that the output is as expected.

e Sequencer/Sequence: They are used to generate stimulus to the DUT.
e Coverage collector: It collects coverage information.

Q100.parameter, define] typedef Z[BX 5|

In SystemVerilog:

e parameter: It's a constant within modules

, interfaces, or packages. It cannot be changed once it's defined.

e define:It's a preprocessor macro. It's text replacement performed before actual compilation.
e typedef: It's used to define a new data type name, making code more readable and maintainable.

Example:
‘define SIZE 8 // Preprocessor macro

typedef bit [7:0] byte t; // typedef

module my module;

parameter WIDTH = "SIZE; // parameter

byte t data; // using the typedef

endmodule

Q101.new()F0 new[]AIX 5!

omit

Q102.solve...before {{a]{sE

The solve. . .before construct in SystemVerilog is used to direct the randomization engine to solve for the
values of certain variables before others during randomization. It's especially useful in cases where there are
dependencies between the variables.

Example:

class MyClass;
rand bit [7:0] a, b;

constraint ¢ { solve a before b; b > a; }

endclass
In this example, a is solved before b due to the solve a before b directive.

Q103.mailbox FIPAFHI R

Both mailbox and queue in SystemVerilog are used to store data. The main differences are:
e A mailbox provides a mechanism for interprocess communication and synchronization, where one
process can wait for another process to send data to the mailbox. A gueue, on the other hand, is simply

a data structure with no such synchronization mechanism.
e A mailbox can be bounded or unbounded, whereas a queue is always unbounded.

Q04+ ARFFSEE

omit

Q105+ A% anEEH

omit

Q106. XX BEFRANLE

Cross coverage in SystemVerilog is a method for measuring the coverage of a combination of variables, not

just single variables. The advantages of cross coverage are: . . ,
D\H,OW o C‘J“Qbk cover peints Smutomeously

e It allows us to verify that different combinations of inputs have been tested.
e It provides more detailed coverage data that can help to uncover corner cases.

Q107.pass_by_value F[1 pass_by_ref X5

omit

Q108.$display FO$write X5

Both sdisplay and $write are system tasks in SystemVerilog used for displaying information.

e Sdisplay: It outputs the specified values and automatically adds a newline at the end.
e Swrite: It outputs the specified values but does not add a newline.

Q109 F—MEAFEEIP RSB R4

When using enumeration types in the same scope in SystemVerilog, you should ensure that there are no
overlapping enumeration identifiers as this can lead to ambiqguities and conflicts.

Example:

typedef enum {RED, GREEN, BLUE} color e;
typedef enum {ORANGE, BLUE, YELLOW} fruit e; // This will cause a conflict with
the 'BLUE' in color e

Q0. HBYSSHIFRESHRASU

If a signal is missing from a sensitivity list in SystemVerilog, the always block may not execute when expected. It
can lead to incorrect simulation results as changes to the missing signal will not trigger the always block.

Q111.covergroup TE{ERFIZEIM BIRNMAIE A

A covergroup in SystemVerilog can be defined either inside a class or outside of it. The location does not
affect its functionality. However, when defining a covergroup inside a class, the covergroup is associated
with an instance of the class, allowing you to collect coverage data on a per-instance basis. When defining

a covergroup outside of a class, the covergroup is associated with the module or interface in which it is
defined.

Example:

class MyClass;

bit [7:0] data;

covergroup cg;
coverpoint data;
R0 4

endgroup

function new() ;
cg = new();
endfunction

endclass

module my module;

MyClass mc = new();

covergroup cg;
coverpoint mc.data;
RPN

endgroup

initial cg = new();
endmodule

In this example, MyClass has a covergroup that collects coverage on data, and my module also has a
‘cover

groupthat collects coverage onmc.data’.

Q112 &A=l

omit

Q113 ZERTURTHEW=E (R, HAEEERMITE
FERE. i)

The three stages of a state machine usually refer to:

e Current state: where the machine stores the status information.

o State transition: which provides the rules for moving from one state to another.

e Output function: it provides the rules for determining the output of the machine based on the current
state.

QUAHAREZD, ATAEEREZRD

Q115.Verilog for BERBEZRS

Yes, the 'for' loop can be synthesized in Verilog, but the loop iteration count must be a compile-time constant.
The synthesizer unrolls the loop to generate the hardware.

Q116.55IE WAIER bit EEHH!

e Single bit synchronization: Flip-flops can be used for single-bit synchronization. An example would be a
shift register, which can pass a bit from one flip-flop to another.

always @ (posedge clk or negedge reset) begin

if (!reset)
qg <= 1'b0;
else
q <= d;
end

e Multi-bit synchronization: For multi-bit synchronization, multiple flip-flops can be used, one for each
bit. A synchronization mechanism can include a series of flip-flops for each bit to be synchronized.

genvar 1i;
generate
for (i=0; i<WIDTH; i=i+1) begin : multi bit sync
always @ (posedge clk or negedge reset) begin
if (!reset)
q[i] <= 1'b0;
else
ali] <= d[il;
end
end

Q117 3B WRZE bit B LS

omit

Q118.SystemVerilog H##n ZFR~HA

In SystemVerilog, the ##n is used in sequence expressions to denote a delay of 'n' clock cycles. For example, a
##3 b would mean that event 'b' happens 3 clock cycles after event 'a'.

Q119.UVM IERIEMTA? BB, MMTAEER
UVM?

omit

Q120. @I #lEl (factory)

The factory mechanism in UVM is used to create and configure UVM objects and components. The factory
provides a central location for object creation, which enables more flexible testbench development, including
the ability to override the object type, which is essential for building configurable and reusable testbenches.

Q121. BN EERER

Transaction-Level Modeling (TLM) is a high-level approach to modeling digital systems where the focus is on
the flow of data transactions rather than the implementation details of the digital system. This makes it
possible to abstract away many details of the system and can significantly speed up simulation.

Q122.uvm_component] uvm_object BIX 5|

The main difference is that uvm component is derived from uvm object and includes additional features
necessary for hierarchical structure, like parent-child relationships, phases, and TLM interfaces.
Both uvm_component and uvm_object are base classes used in UVM from which other classes are derived.

Q123.UVM 1 run_phase #] main_phase BIX 5l

The run phase is a top-level phase that is used to execute the test. It consists of several sub-phases, one of
which is the main phase. Themain phase is typically where the bulk of the test functionality is coded. So
the run phase contains the main phase as well as other phases like the pre_main_phase and
post_main_phase.

Q124. /24 ZEF phase 1]

The phase mechanism in UVM provides a structured way to organize and control the execution of a test. The
phases ensure that certain operations happen in a specific order, like build, connect, end of test, etc., making
the tests more predictable and manageable.

Q125.m_sequencer] p_sequencer X3

m_sequencer and p_sequencer are both handles to the sequencer driving a UVM agent or sequence
item. p_sequencer is typically used in sequences to access the user-defined sequencer, and it must be cast to

the appropriate type. m sequencer is an integral part of UVM, automatically set to point to the sequencer
running the sequence, and does not require casting.

Q126.top-down phase. bottom-up phase BIpLL

Top-down and bottom-up phases refer to the order in which phases are executed in the UVM testbench
hierarchy.

Top-down phases are: build_phase, connectiphase, end_of_elaboration_phase, start_of_simulation_phase, and
run_phase.

Bottom-up phases are: extract_phase, check_phase, report_phase, final_phase.

Q127. 9114 build_phase & top-down phase,

connect_phase ;& bottom-up phase

The build_phase is a top-down phase because it starts from the highest level of the hierarchy (i.e., the test) and
works its way down, allowing the lower-level components to be aware of their parents and siblings during
construction. This is useful for setting configuration values in lower-level components.

The connect_phase is a bottom-up phase because connections are often made from a lower-level component
(like a driver or monitor) to a higher-level component (like an agent or a scoreboard). Therefore, it is easier to
make these connections after all lower-level components have been constructed and any necessary
configuration has been applied.

Q128.$size FBF packed array #1 unpacked array 3 IS5 ZIAY
A

$size in SystemVerilog returns the number of elements in an unpacked array and the number of bits in a

packed array.
Q129.class #[struct BYF[E

Both class and struct are used to group related variables and functions together. The differences are:

e Class: A class is a dynamic data type, meaning objects of the class are created dynamically at runtime.
Classes support inheritance and polymorphism, allowing for more complex and flexible data structures.

e Struct: A struct is a static data type, meaning its size is fixed at compile time. It does not support
inheritance or polymorphism.

Q130.class #] module B9&[E

Both classes and modules are used to encapsulate and manage related data and behavior. The differences are:

o C(lass: Classes are typically used to model data structures or transactions in a testbench. They are not
synthesizable and can support dynamic object-oriented features like inheritance and polymorphism.

e Module: Modules are used to model design entities and can be synthesized into hardware. They are
static and do not support dynamic features.

Q131 XI5 EIZEATIIR LI

omit

Q132 FKFEFERAUENX HE BRI RZEN LA
(FEREASiE) RFIEL L mEG

Yes, a subclass can define a member or method with the same name as in the parent class. However, the
subclass's version will shadow the parent's version, which means that when accessed from the subclass, it will
refer to the version defined in the subclass.

Q133. A AEERET

omit

Q134 ZiERBEEFIHERRNRRZE T4

Inter-thread communication is used to control shared resources in order to prevent race conditions and ensure
that resources are used in a coordinated manner. This helps to maintain data integrity and avoid unexpected
behavior.

Q135.uvm_transaction] uvm_seq_item BYKFE

uvm_seq_item is a subclass of uvm_transaction. uvm_transaction is the base class for all transaction-level
models. uvm_seq_item adds additional functionality that's required when a transaction is used in a sequence,
like the ability to keep track of the sequence and sequencer that generated it.

Q136.p_sequencer 2{TA4?

p_sequencer is a handle to the user-defined sequencer that's driving an agent or sequence item. It is typically
cast to the appropriate type in the sequence.

Q137.m_sequencer 2{TA47?

m_sequencer is a handle that's automatically set to point to the sequencer that's currently running the
sequence. It is an integral part of UVM and does not need to be cast to a particular type.

Q138.new()F] create HH4AKXEI

new() is a constructor method that's used to create an instance of a class. create is a method in UVM factory
that's used to create an object or component. The main advantage of using create over new is that create
allows for factory overrides, which is useful for creating flexible and reusable testbenches.

Q139.9{a]jZ5f] sequence

To start a sequence, you can call the start method on the sequence, passing in a handle to the sequencer.
For example:

my sequence.start (my sequencer) ;

Q140.copy F1 clone BIXZI

Both copy and clone are used to create a duplicate of an object, but they behave differently:

e Theclone () method creates a new object that is a mirror image of the object it was called on,
including any dynamic data. The new object is the same type as the original object.

e The copy () method copies the state of the object it was called on to the caller object. It doesn't create
a new object, and the caller object can be a different type from the original object.

Q141.Agent Y Active mode #[] Passive mode X3

Active and Passive modes refer to the modes of operation of an agent in UVM:

e Active mode: In this mode, the agent contains a driver to drive stimulus onto the DUT and a monitor to
monitor the DUT's response. This mode is typically used for stimulus generation.

e Passive mode: In this mode, the agent contains only a monitor to monitor the DUT's response. This
mode is typically used for observation and doesn't generate any activity on the interface.

Q14272 UVM BT #H#l, AHAEEREMLE

The registration mechanism is used in UVM's factory to allow objects to be created by their type name as a
string. This enables more flexible and configurable testbenches since objects can be created and configured
dynamically at runtime based on the type name.

Q143.f&A UVM B9 #4)

The factory in UVM is a mechanism that is used for creating and configuring UVM objects and components.
The factory provides a central location for object creation, which allows for object type overrides and more
flexible and reusable testbench development.

Q144.UVM HRY RAL +A, BTLARRRFHA?

RAL stands for Register Abstraction Layer in UVM. It is used to create an abstract model of the registers in the
DUT. This abstract model can be used for generating register accesses in tests, checking the results of reqgister
accesses against the model, and predicting the behavior of the DUT based on register accesses.

Q145 EIARFR. FRERMERPIGIE

These levels of verification refer to the granularity at which the verification is performed:

o System-level verification: This involves verifying the entire system as a whole, including all its
subsystems and components. This is typically where integration and use-case testing occur.

» Subsystem-level verification: This involves verifying a subsystem of the system, which could be a group
of modules that work together to perform a particular function.

e Module-level verification: This involves verifying an individual module, focusing on the functionality of
that module.

Q146.1P #1 VIP D EIFEHEMH4

IP stands for Intellectual Property and in the context of verification, it refers to a reusable unit of logic or design
(like a module or subsystem) that can be used across multiple projects. VIP, or Verification IP, is a reusable unit
of verification environment that is used to verify the functionality of IP.

Q147.set_config_*# uvm_config_db X5

Both set_config_* methods and uvm_config_db are used to pass configuration information from one
component to another. The difference is:

e set_config * methods: These are methods in uvm_component used to set a configuration value for a
particular field. The value can be retrieved later using get_config_* methods.

e uvm_config_db: This is a database that stores configuration information in a central location, allowing it
to be accessed by any component in the testbench.

Q148.$stop. $finish F final {N{aI{sEFE

$stop, $finish and final are system tasks used to control simulation flow:

e $stop: This system task stops the simulation and leaves the simulator in an interactive mode, allowing
the user to inspect the state of the design.

e $finish: This system task stops the simulation and exits the simulator.

o final: This is a special system task that is automatically executed at the end of the simulation, after
$finish. It's often used for tasks that need to be done after the simulation has completed, such as
reporting coverage.

Q149.f&R virtual sequence # virtual sequencer {EF

Virtual sequences and virtual sequencers are used in UVM to control and coordinate the operation of multiple
sequences and sequencers:

e Virtual sequence: A virtual sequence is a sequence that can start other sequences on multiple
sequencers, allowing for coordinated stimulus generation across multiple interfaces.

e Virtual sequencer: A virtual sequencer is a sequencer that doesn't drive any interface itself, but serves as
a placeholder for a virtual sequence to run on.

how to use tri-state buffer and not gate to implement all gate?

give you an inifinite sequence, you every 1 bit every cycle, write the state matchine if the current
number can be divided by 57 What if MSB coming first? what if LSB coming first? And explain the code.
how to write a fix-priority arbiter, how to write a round robind arbiter (use kill chain). How do you verify
it? And explain the code.

how to write a CAM? And explain the code.

how to design HW linked list? And explain the code.

1. Implementing all gates using tri-state buffers and NOT gate:

This is an example of how you can create a NAND gate using a tri-state buffer and a NOT gate. NAND gate is
universal, and all gates can be created using a combination of NAND gates.

module NAND GATE (input a, b, output wire y);

wire not a, not b;

assign not a = ~a;

assign not b = ~b;

tril tri state bufl(.y(y), .a(l'bl), .e(not a));
tril tri state buf2(.y(y), .a(l'bl), .e(not b));

endmodule

2. State machine to check if a number can be divided by 5:

This can be done using a simple finite state machine (FSM) that moves through 5 states, with each state
representing the remainder when divided by 5. Here's an example when the MSB is coming first:

module div by 5 (input wire clk, reset, bit in, output reg [2:0] state);

always @ (posedge clk or posedge reset) begin
if (reset) state <= 3'dO0;

else state <= (state << 1 | bit in) % 5;

end

assign div by 5 = (state == 0);

endmodule
If the LSB is coming first, you can shift the state to the right instead of the left.

3. Fixed priority arbiter:

A fixed-priority arbiter gives the highest priority to the highest numbered request. A round-robin arbiter, on
the other hand, selects the next highest request from the last one served. Here's an example of a fixed-priority

arbiter:

module arbiter # (parameter N = 4) (input wire clk, reset, wire [N-1:0] req, output

reg [N-1:0] grant, output reg [N-1:0] ack);

always @ (posedge clk or posedge reset) begin

if (reset) grant <= 4'b0;

else begin

grant <= req & ~ack;
+1 90 | o vy 4 O
ack <= (ack << 1) | (reg & ~ack); z&

"

buffes

module i (fr\Pu'\' X, mpul en, outpuT ¥

m%mw y=en? x: |'b2;
QV\J{WIODFM]L
X | en y
9| o0 2
0 | ¥
{ 0 2
\ | I
LNAND T x [Y Jour [BW g iy, o000
e | ®) GEIDEINE P SIS
) (I
[) | %lﬂ’ﬂ . 0, ¥,
\ I 0 ﬁ@% s e 0,91
ww\@%’ﬁ y %1 W, 39 Tﬁx'ﬁfﬁéﬁw
% Yool fHuba, ﬁﬂﬁ\m%o
laﬂﬁ?%?vr)’ﬁhbﬂq'ﬁ?ﬂiﬁ
X—"—-l>-'-— (w\ OND Goite - A l;] [
r_\J l“‘\,ﬂ—’-n\:\- ~—— Oy
> Gt {
N Y =
/
NoR! XY | &P (ot %A&ﬂ -
N B
v v 4 ° \ V) N
) \v z 1
) AR t V| o %
KND\
Daj \——Vm‘&'
y)
VWTMP arl
X v oo | e 2
Glofvle o7 O
v \0 €) ~

. Y | > A ot
)‘\OO “ U U\/ V]
% | (
o 0 (3

) 2 4
an
2
pmod & I
—_~~— ————x

b 2h3S dhaie s B H. .

rod? 2 1 2
g 4 2
L ‘;]
[1 1)
;] 10 “7]
L o
\955»3’%:1-53 mod 3~ o - d3-o
RV |
L\
moct2 - 9 vdd—(ﬁ&. 1, 2, 1, 2
I2 43 2x2 43
N C—
Q]
mod3- 2 Z:—St,ml;-z
o
QuEwrsd KA = ¥FAR <+ ARRAS
0\5\ é/D
ool 3 - o
ll ’h
00(5"1 £ |
Jo 1o ter (360 wodremaln [=20f 1 0 93]
mod? -2 =
U, 10T =,
%ﬁé reod A . Ixa¥e - o 224G s u
i SR 0dS -~ Ve >mods -1 s s 8
\ ° 3x248 =
(-‘\b’ . [/] D// S 22N -~ @
mody™" 4"‘?\ / WI'D’S-'L P SN
4\0”:\’}4, Wﬂ)o(g' 4«: ~ 1
b o Il - L
B Lsiz ' > ¥ 3 I
7 [3) [$) ©

N
/

module fixeot- pHorty— cubrier (

inpal [0 req,

oulput [T:01 gt

)5

assign _oronl = req & (wvregq +1)3
v 1 ¥

endmoolule

moohle rototor (

nput [7:0] in

put ok,

piatput [70] out

req [7:07 shift_ cownt;

inrtial shitt. count <=0 ;

alwwys @ (‘poSeche clk) Be%iva

it (shitt cownt =z0)

out <= M)

else

out <= §in [T ~shifs. cowil o1, [1: 8- shipt- coust] } 3

-

shift_count <= shitt. count + ()

end 0 " RSRiaRESR

endmodute FEE) 405 13 58 B A BITH) shifr_ ouatt

ZRE ponpreemptve sln i H BHaR)AFE

» | - @B@Xfxaw%

end

endmodule
4. Content Addressable Memory (CAM):

A CAM is a special type of memory where the memory unit is accessed based on the content rather than the
address. In a CAM, you supply the content, and the CAM returns the address where the content is stored.

FRER nn camB 8ot R
module CAM # (parameter WIDTH = 32, DEPTH = 256) (input wire [WIDTH-1:0] data in,

input wire [WIDTH-1:0] search data, input wire clk, input wire write en, input
wire search en, output wire match);
reqg [WIDTH-1:0] mem [DEPTH-1:0];
integer 1i;
always @ (posedge clk) begin
if (write en) mem[i] <= data in;

end

assign match = (search en) ? (mem[i] == search data) : 1'b0;
endmodule

5. Hardware Linked List:

A linked list in hardware can be implemented using a block RAM with two ports, one for reading and one for
writing. The RAM can store the data of the linked list nodes and the index of the next node in the list.

module LinkedList # (parameter WIDTH = 32, DEPTH = 256) (input wire [WIDTH-1:0]

data in, input wire write en,

input wire clk, output wire [WIDTH-1:0] data out);
reg [WIDTH-1:0] mem [DEPTH-1:0];
reg [WIDTH-1:0] next index [DEPTH-1:0];

integer head, tail;

always @ (posedge clk) begin
if (write en) begin
mem[tail] <= data in;
next index[tail] <= head;
head <= tail;
end
data out <= meml[head];
end

endmodule

For all the above examples, the code can be tested and verified by creating testbenches and applying different
stimulus. You can also verify the designs using formal methods. Please note that the examples are simple and
for illustration purposes only. Real-world designs may require additional features and more complexity.

module Cam H(WIDTH= §,40DR =4) (

input [WIDTH~1 207 plata-in,

nput [ADDR -1 20 I addr,

input [WID™ —1:¢3 gearch_olala.

output [24% ADDR -1 10 puf

ot matohed

nput clk)

reg [WldTH-1:0] mem C2%%AaDDR -1 : o]}

[23(%7 St e G\Fa
J

if (wr_em begin

mem [ot [mem.cache Codoly]I T <=0

mem [addr Colota_ 23] <r;

)

mem. Coche [oddr] <z doto. tn)
en Se —en -

genvar i ;

genernite

Hor(iz0; {c 2X¥ADDR; ++1) begn

out [i) <= memboalc2s
end
&M'%Luomf_e_
m ~
endmadule [elog2 (WIDTH)-1=2)

h nfegqer :

Jor (emo 5 e wIDTR ;)

T (opt CCI) bz,

mp_dvdl lfﬂkd,lis‘f ‘ I‘E(Z!ﬂ l‘lwl dofe. i OPP””"

L34 L. Svr ki wd

" @b ife B2 (43 3R

- ﬁ:x{ﬁuﬁx niefi R)

?Qm- émirﬁ‘i LA Ratm.

- YA (MH***M*?!)

Heoder Pitafield Newt (ph flard)

(-~

2.

Free Ret

o - wmawwww ender 3BT 315
' 3 Header 2 o

2 NuLL l © ’J - — - m,_\
3 NuLy

[$ é“’ %Qa& ’?isﬁﬁm,

nsert_ndex K1

1 an froe it $@RTp - T Aree. fudken

() mem U insest_ wdex]. next <= free_index

) "D‘lﬁf\ . ‘;? iig e i E}%M?’%i&ﬂxi}ﬁ}] prev_node..

memUfree. tngdend mext <= mem [insert. mder] . nest

merm Trer. den] . dlote, <= dotn _ in

BRI R A [Rxa R) Hham TRy I presmnosk -

(2 o h B e 2 FAENIEH- 132, 0 R- 195 @ prevonode L& hoooler. AwwiBdist Biofsfren

A LY. EA A IR e e PEL YL 14,8

